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Abstract. This study deals with the generalized linear Volterra-type functional
integro-differential equations with mixed delays. A combination between matrix-collocation
method and Morgan-Voyce polynomials is developed to solve these type equations. In
addition, an error analysis technique is given to improve the obtained solutions. Numerical
examples are performed to confirm the efficiency and validity of the method. The comparisons
are made in tables and figures. The discussions show that the method is fast and precise.
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Collocation points; Error Analysis.

1. INTRODUCTION

In this study, the Morgan-Voyce matrix-collocation method, which was previously
used in [1], is developed to solve the linear Volterra-type functional integro-differential
equation with mixed delays and variable bounds in the general form

m, m, Vis(%)

m m m,
zpk(x)y +ZZQ ( X+:Lllj) g(X)"‘ZZl/lrs _[ Krs (X’t)y(r)(arst"'ﬁrs)dt (1)
k=0 i=0 j=0 r=0s=0 U (x)
subject to hybrid conditions
m-1 )
(a|ky a)+h,y (b))zﬂ,, I=01....m=-1, m>m,m,, ¥

=

=0

where B (x), Q;(x), g(x), ug(x), vs(x), and K (xt) are defined on a<x,t<b
(a<u(X)<Vq(x)<b); a,, by, 4, and y,, are appropriate constants.

! Dokuz Eylul University, Department of Geophysical Engineering, 35370 Izmir, Turkey.
E-mail: mustafa.ozel@deu.edu.tr.

2 |zmir University of Economics, Department of Mathematics, 35330 Izmir, Turkey.
E-mail: omur.kivanc@ieu.edu.tr; omurkivanc@outlook.com.

¥ Manisa Celal Bayar University, Department of Mathematics, 45140 Manisa, Turkey.
E-mail: mehmet.sezer@cbu.edu.tr.

ISSN: 1844 — 9581 Mathematics Section


file:///E:/JOSA/2019_2(47)/mustafa.ozel@deu.edu.tr
file:///E:/JOSA/2019_2(47)/omur.kivanc@ieu.edu.tr
file:///E:/JOSA/2019_2(47)/omurkivanc@outlook.com
file:///E:/JOSA/2019_2(47)/mehmet.sezer@cbu.edu.tr

296 Morgan-Voyce Matrix Method for ... Mustafa Ozel et al.

Linear functional integro-differential equation derived from Eqg. (1) is a combination
of integral, differential, and integro-differential-(difference or delay) equations. These type
functional equations govern many physical phenomena arising in applied sciences, such as
mathematics, engineering, electrodynamics, heat and mass transfer, mechanics, physics,
biology etc. [1-20].

Recently, the mentioned functional equations have been investigated by many authors
for their analytical and numerical solutions. Most of these equations have no analytical
solution and so numerical methods are required to obtain their approximate solutions. Some
of them are Laguerre approach method [8], cubic b-spline scaling function technique [9],
Dickson matrix collocation method [10-12], varionational iteration method [13], Taylor
polynomial matrix collocation method [14, 21, 22], homotopy analysis method [15], Bessel
collocation method [16], Lagrange and Chebyshev interpolation method [17], Legendre-
Gauss collocation method [18] and Morgan-Voyce polynomial method [1].

Our aim in this study is to develop a matrix method based on the first kind Morgan-
Voyce polynomials and to seek the approximate solution of the problem (1)-(2) in the form

(see [1])
N
y(X)=yy (x)=>yab, (), a<x<b, (3)
n=0

where a, are unknown coefficients and b, (x) is Morgan-Voyce polynomials, which are
defined to be (see [23-27])

bn(X)=Z(n+J:jxj, neN,a<x<b. (4)

n
j=0 n-J

Morgan-Voyce polynomials b, (x), which are appeared in electrical ladder networks, contain

the following important properties [23-27]:
e The polynomials b, (x) expressed by Eq. (4) are recursively defined by the relation

b, (x)=(x+2)b, 4 (x)—b,,(x), n>2, (5)

with by (x)=1and b, (x)=x+1.
By Egs. (4) and (5), the polynomials y(x)=b,(x), (n=0,1...) read the second order
differential equation

X(x+4)y"(x)+2(x+1)y'(x)-n(n+1)y(x)=0.

e The generating function of b, (x) is of the form

b(xt)= b, (X)t" =(1-t)B(x.1),

n=0
where

B(x,t) =[1—(xt+2t—t2)T.
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2. MATERIALS AND METHODS
2.1. MAIN MATRIX RELATIONS

In this section, the matrix forms related to Eq. (1) and the conditions (2) are presented.
For this purpose, the approximate solution (3) of Eqg. (1) can be written as the truncated
Morgan-Voyce series form (see [1])

yn (X)=b(X)Y, (6)
where

b(x)=[ by (X).by(X) ..oy (x)] and Y =[yo.,y1,-.. ¥ ] -

Here, using the first kind Morgan-Voyce polynomials by (x), the matrix form b(x) can also
be written as (see [1])

b(x)=X(x)M, (7)
where
X(x)=[1,x, ,XN:|,
and
(0} (1) (2 NY ]
o 1) ) ()
2 3 N+1
o [o) () [V
M = 4 (N +2j .
0 0
0 N-2
)
0 0 0o -
L 0 .
Besides, the relation between the matrix X (x) and its derivative X(k)(x) yields
X®(x)=X(x)T*, k=01...,m, (8)
where
010 .. 0
002 ... 0
Tolos a2
0 N
_0 O_
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and T is a identity matrix in the dimension (N +1)x(N +1). By using the matrix relations

(6), (7) and (8), it holds that

y® (x) = y{ (x)=b" (x)Y = XE (x)MY = X (x)T*MY |

(9)

and substituting X — 4;X+ 44, K > and x —> e t+ B, k—r into the matrix relation (9),

respectively. Then the matrix relations become

Y (gx+ ) = X ()L (A5, ) T'MY

and
YW (st + Bis) = X (X)L( s, B ) TTMY
Note that the matrix X (Ax+ ) can be formed as [8, 11, 12]
X (Ax+u) =X (x)L(A,u),
where

(o) (3o () o [3)rou
: []ﬁ o (Vo

( T
L= ﬁgzﬂo (';'j/l?y'“-z |

2

N
0 0 0 AN 40
)

On the other hand, the kernel functions K (x,t), r=0.1,....,m; and s=0,1,...

be approximated by the following series form [8, 11, 12, 14]

)
— kI’S mtn
m=0n=0 .
where
O™"K . (0,0
Ky = 1 al );m,n:O,l,...,N.
min!  ox™at"

Thus, Eq. (12) can be stated as the matrix form [8, 11, 12, 14]

Krs (X,t) = X (X) K X (1),
where

(10)

(11)

,m, can

(12)

(13)
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Inserting the matrix relations (9), (10), (11), and (13) into Eq. (1), then the matrix
equation is obtained as

kmzopk(x) X)T*MY +§§QU X)L (4.4 ) T'MY =g (x) (14
+ 3 30X () KisSee (X)L (e e )TTMY,
where o
s 00=[si00]= T 7 (o | LD =Ws L™ o
0% p+q+1

2.2. MORGAN-VOYCE MATRIX METHOD

In this section, the matrix method is established using matrix equation (14) and the
collocation points, which are defined to be

x,=a+%|, 1=01,..,N, (15)

Substituting the collocation points (15) into the matrix equation (14), a system of the
matrix relations are obtained as

m m_m,

2R T+ Q5 (%)X (’111 '”IJ)T
:r.; . i=0 j=0 MYZQ(X|).
;; rs rs( ) (arSVﬁirs)Tr

Then, the compact form of this system can be expressed as

{ZPKXT"JrZZQ”XL(ﬂ” 45T N G rs,ﬁrs)fr]MY:G, (16)

i=0 j=0 r=0s=0

where

P, =diag [Pk (%) R (%) - R (% )](N+1)><(N+1) ’

Q; =diag |:Qij (%) Qj (%) e Qy (X )J(NH)X(NH) ’
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X)) [T % X K
X(%) | |1 % X - x| o
X = : - N 1 R ’X:dlag[X(XO)’X(Xl)""’X(XN)](N+1)X(N+1)2'
X (%) | 1 Xy X X\ |
= dlag [Krs, "’Krs ](N+1)2><(N+1)2 ,

S, =diag [Srs (%) Srs (%) -+ Sis (X )](N+1)2X(N+1)z :

E(ars'ﬁrs):diagI:L(ars’ﬁrs)’l-(ars'ﬁrs)" ( rs'ﬂrs):l N-+1) (N+1)2’

r _ r r r U _ T
T _|:T T o T }(N+1)X(N+1)2’ and G _[g(xo g(X1) g(XN ):le(’\”l).
The fundamental matrix equation (16) of Eq. (1) can be given as

WY =G or [W:G], (17)
where

{Z Pk XTk +ZZQIJXL(A1] :UIJ) iil//rsx Krs SrsL rs ’ﬂrs)fr} M

i=0 j=0 r=0s=0

On the other hand, by the relation (9), we can express the matrix relation of the
conditions (2) as

Uy =[4]or[Uj;4], (18)
such that

U, i(akJ a)+ X (0))T*M =[ujo.upp,....up |, j=0.1...,m-1.

k=0
Consequently, in order to obtain the first kind Morgan-Voyce polynomial solution of

Eq. (1) subject to the conditions (2), we replace m row(s) matrices in Eq. (18) by any m
row(s) of the matrix equation (17). Thereby we obtain an augmented matrix system as

WY =G or [\/\7:@]. (19)

When the rank of the system (19) yields N+1, it holds that Y :( ~)_1@}. The
approximate solution is obtained after inserting the matrix Y into Eq. (3).
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3. ERROR ANALYSIS VIA RESIDUAL FUNCTION

In recent years, an efficient residual error analysis has been developed to correct the
approximate solutions for some methods [8, 11, 12, 28]. Here, the present method is applied

to this error analysis. Thus, the Morgan-Voyce polynomial solution y, (x) can be improved.
By substituting this solution into Eq. (1), the residual function stands for

Ry () = L[y, (0)]-9(9), (20)
where
LIy 00]= 2R (W () + 230, ()Y (Ayx+ 44 ) - XD ] K (Y (et + B, )t
k=0 i=0 j=0 r=0 s=0 Urs (X)

By considering the exact solution y(x) , the error function can be written as
ev (X)=y(x)—yy (%). (21)
By Egs. (1), (2), (20), and (21), the error equation is
Ley )] =L[y()]-L[yy ()] =-Ry(x). (22)

subject to the homogeneous hybrid conditions

f[a,ke,(j) (a)+b,e’ (b)]=0. (23)

Egs. (22) and (23) constitute an error problem, which can be readily solved via the
procedure given in Section 2.2. Thus, the estimated error function is of the form

€ (X) = Zynn  (M>N).

such that the corrected Morgan-Voyce polynomial solution Yy  (X) = Yy (X) +€y , (X) and the
corrected error function E, ,, (X) = y(X) -y, v (X) are obtained.

Furthermore, let us give an error computation o, , which is used to specifically
compare the results in this study. J,, is defined to be (see [20])

1 N
= eri‘ XI
1=

where X, is the collocation points (15). We can also compute the error & ,,, which is as
follows:
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13,
5N,M: MZEN,M (XI)1
1=0

where E, ,, (x) is the corrected error function.

4. NUMERICAL EXAMPLES

In this section, five illustrative examples are treated to test the efficiency and validity
of the present method. Numerical calculations have been performed using a computer
program module on Matlab and Mathematica softwares.

Example 1. [3] Consider the second-order neutral differential equation with proportional
delays

y”(x)—% y(x)- y(gj_ y'(gJ_% y”(gj =—x’—x+1, xe[0,1], (24)

subject to the initial conditions y(0)=y'(0)=0. By Eq. (16), the fundamental matrix
equation of the problem can be constructed as

2 2 0 _
(Z PXT " +3° > QXL (% ’ﬂij)le MY =G, (25)
k=0 i=0 j=0
where
-2 0 0 0 00O 100 X(0)| [1 00
P= 0 -2 0|, R=[0 0 0|,P,=0 1 0f, X=[X($)|=|1 % %],
0o o0 -2 000 00 1 x| (111
010 0 0 2 -1 0 O 1 00
TI=10 0 2|, T2=[0 0 0[,Qpu=[0 -1 0|, L(Ag.to)=L(£,0)=|0 % 0],
000 000 0 0 -1 00 &
10 0 111 -1 0 o0
Qu=|0 -1 0[,M=[0 1 3[,Qu=|0 -} 0],
0 0 -1 001 0 0 -1
1 00
L(ﬂio'ﬂm)—L(ﬂzoﬂzo)—L(zao): 0 % 0
001
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The matrix system of Eq. (25) is computed as
I _u _15-1
4 4 4"
W:Gl=|-7 -& -%:7| (26)
—% -4 —%:—1
and the matrix forms for the initial conditions are obtained as
[Uo;ﬂo]:[l 11 O] and [Ul;ﬂl]:[o 1 3 : O]. (27)

By using the system (26) and the condition matrices (27), we obtain the solution
¥, (x)=x*, which is the exact solution. While the present method directly reaches the exact

solution, a direct method based on Chebyshev cardinal functions [3] has yielded the error
6.16e —64 on avarege.

Example 2. Consider the Volterra type functional integral equation with variable bounds

0.05x 0.95x

_[ sin(x—t)y(t)dt, xe[0,1],

0

cos(x—t)y(t)dt+ (28)

O ey

where

g(x)=-0.25c0s(0.9x)+(1.25—0.025x)cos ( x)+0.25sin (0.9x) —(0.25+0.475x)sin (x).

The exact solution of Eq. (28) is y(x)=cos(x). The fundamental matrix equation
yields

{Pox ~ oo X Koo SaoL (o g ) T° =90 X Kmsml:(aopﬂm)fo} MY =G.

After following the procedure of our method, we can solve the augmented matrix and
thus the Morgan-Voyce polynomial solutions are obtained in the form (3) for N =2,3,5,6 on

[O,l]. The comparison of the exact and Morgan-Voyce polynomial solutions are given in
Fig. 1 and Table 1. The error computations are simulated in Fig. 2.

= . : . : . . T 0.12
T
095t ~8. E g e, (x)
T 04| — —— — e, (x| o

09 ~ b 3

k- le (x|
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a8 0.08 | —— legx)l
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=Y =
>075F — < g < 006 A
~ z
=]
0.7 ) X,
~ lc]
. ~ 0.04 [
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06
—ay,(x) 0.02[ g
085 ¥ (%) Lo@B O U_n
=} ) - 4 - - 4
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Figure 2. Comparison of the actual absolute errors
of Example 2.

Figure 1. Comparison of the exact solution and
Morgan-Voyce polynomial solution of Example 2.
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Table 1. Numerical results of the exact solution, Morgan-Voyce polynomial solution, and mean absolute

errors for Example 2.
X y(xi) :COS(Xi) N=2 N=3 N=5 N=6
0 1 1 1 1 1
0.1 0.995 0.98613 0.99554 0.995 0.995
0.2 0.98007 0.96759 0.98053 0.98007 0.98007
0.3 0.95534 0.94438 0.95547 0.95534 0.95534
0.4 0.92106 0.9165 0.9209 0.92106 0.92106
0.5 0.87758 0.88395 0.87732 0.87758 0.87758
0.6 0.82534 0.84673 0.82526 0.82533 0.82534
0.7 0.76484 0.80484 0.76524 0.76483 0.76485
0.8 0.69671 0.75828 0.69778 0.69668 0.69673
0.9 0.62161 0.70705 0.6234 0.62153 0.62167
1 0.5403 0.65115 0.54262 0.54013 0.54044
Mean abs.error n.a. 0.03295 6.58e-04 2.74e-05 2.20e-05

Example 3. [19] Consider the second-order neutral Volterra integro-differential equation

y'(X)=(x+1)y'(x)+y(x)=(x +1)(sin(x)—sin1)+Jx'l[xy(t)+ y'(t)+ty"(t) ]dt, xe[-11],

subject to the initial conditions y(—1)=cosl and y'(—1)=sinl. The exact solution of this

problem is y(x)=cosx. This problem is solved for N =10, 11, 14 and M =11, 12, 15 on

[—1,1]. In Table 2, the absolute and corrected absolute errors of the present method are

compared with L? and L” errors founds in [19]. The actual and estimated absolute errors are
also illustrated in Fig. 5. It is clearly seen from Figs. 3-4 and Table 2 that the Morgan-Voyce
polynomial solutions are very close to the exact solution. In addition, when CPU time in
Table 3 is investigated, the well-equipped computer is not required to employ the present
method.

Table 2. Comparison of the present numerical results with other existing ones for Example 3.

I

X |e14 (Xi )| ‘E14,15 (Xi )‘ |e16 (Xi )| errors [19]
-1.0 3.33e-016 2.22e-016 2.22e-016 4.21e—-014 (|_2 , N=14)
-0.5 3.33e-016 5.55e-016 4.44e-016 8.96e —014 (L*, N=14)
0.0 6.66e — 016 4.44e -016 4.44e -016 4.19e—014 (L2, N=16)
0.5 7.77e—-016 0 4.44e-016 9.30e 014 (L, N=16)
1.0 2.43e-014 1.02e-014 1.55e-014 -
Table 3. CPU time(s) of the present method in terms of the different N for Example 3.
Yn (X) Y, (X) Y10 (X) N (X) Yi6 (X)
Time (sec.) 0.24960 0.49920 1.24801 1.88761
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Figure 3. Comparison of the exact solution and Morgan-Voyce polynomial solution on [-1,1] for
Example 3.
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Figure 4. Oscillation of the exact solution and Morgan-Voyce polynomial solution on [-1,11] for
Example 3.
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Figure 5. Comparison of the actual and estimated absolute errors for Example 3.

Example 4. [20] Consider the Fredholm-Volterra integral equation

1 h(x)

y(x):e"‘—ex(h(x)—l)—Ie“h(t)y(h(t))dt+ j ey (t)dt, xe[0,1]

where h(x)={x/2, x}. The exact solution of this equation is y(x)=e™. The equation is

treated for N =5, 8 and M=9. In Table 4, the present values of the error J, are compared

with other existing methods [20]. The Morgan-Voyce polynomial solutions are obtained by
the present method in seconds as seen in Table 5. As seen from Tables 6 and 7, the better
numerical results are obtained, as both N and M are increased. In addition, the comparisons of
the residual functions are plotted in Fig. 6.

Table 4. Comparison of the errors o, for Example 4.

h(x) X /2 X
Present Lagrange Taylor Present Lagrange Taylor
N, M meth. meth. [20] meth. [20] meth. meth. [20] meth. [20]
3.78e-004 5.93e - 005
3.71e—007 3.36e-004 4.03e—-007 1.41e—-004
5.72e-007 7.80e—008
6.74e—-007 5.77e—007 9.50e-007 2.53e-007
8,9 1.27e-013 n.a. n.a. 1.73e-013 n.a. n.a.

WWW.josa.ro Mathematics Section



Morgan-Voyce Matrix Method for ... Mustafa Ozel etal. 307

Table 5. CPU time(s) of the present method in terms of different N for Example 4.

h(x) x/2 X
Yn (X) Vs (X) Ve (%) Ys (X) Ys (X)
Time (sec.) 0.17160 0.65520 0.14040 0.53040

Table 6. Comparison of the actual, estimated and corrected absolute errors for Example 4 with h(x)=x/2.

X &5 (%) ey (%) [Eas (%)
0 6.494e - 007 1.241e-010 1.513e-013
0.2 7.710e -007 1.779e-010 1.433e-013
0.4 3.661e — 006 3.850e - 010 1.242e-013
0.6 4.795e - 005 2.038e -008 1.401e-013
0.8 2.442e-004 2.407e-007 2.548e-013
1.0 8.067e—-004 1.529e - 006 2.031e-013

Table 7. Comparison of the actual, estimated and corrected absolute errors for Example 4 with h(x)=x.

X &5 (%) ess (%) Eao (%)

0 2.269e - 006 2.907e-009 1.426e—-013
0.2 1.933e -006 4.393e —-009 1.476e-013
0.4 8.056e — 006 8.834e-009 8.615e-014
0.6 3.880e —005 3.056e —-008 1.178e-013
0.8 1.266e — 004 1.393e - 007 2.914e-013
1.0 2.514e-013 5.155e-011 4.441e-016
1 y‘ID'q T T T T T T T
ool [ ——=— R ] ]
IR, (x)] i
08r 1 -
———-— [Ry(x)] o
0.7 ! 7
!
0.6 ,'J |
zz 0.5[ f; 1
0.4 i 7
03 'f i
0.2 '
0.1

0

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Figure 6. Comparison of the residual functions for Example 4 with h(x)=x/2.
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Example 5. Consider the second order Volterra type integro-differential-difference equation
with variable bounds

where

W (x+1) =g (x)+ [ (x-t)y'(t-1)t, x<[0,1],

x-1

g(x)=cos(1—x)—cos(2—x)—sin(2—x)—xsin(x+1),

subject to the initial conditions y(0)=0 and y’(0)=1. The exact solution is y(x)=sin(x).

All comparison results for the relations between exact and approximate solutions are
illustrated in Fig. 7. It is easily seen from Tables 8 and 9 that the approximate Morgan-Voyce
polynomial solutions are improved via the residual error analysis.

1 T T T T T T T T T
0.8 | — 8~ yix)=sin(x) s 8
— < -y, , B
0.8 A P
by, (0 Y s
07k (x) # A 4
: Yo lX L .
7 P '
L v o 4
0.6 4 po
o
=05r s B 7
4
0.4 §- |
vy
0.3 q, ;Ei" =
e
0.2+ - -
5
L
1 y
-4
G;’l 1 1 1 1 1 1 1 1 1
0 0.1 02 0.3 0.4 0.5 0.6 07 0.8 09 1

X

Figure 7. Comparison of the exact solution and Morgan-Voyce polynomial solution for Example 5.

Table 8. Comparison of the actual and corrected absolute errors for Example 5.

X e (%) & (%)) |Eqso (%))
0 0 0 0
0.2 7.52e —005 3.50e - 005 3.30e—006
0.4 7.90e — 005 1.40e - 004 2.28e — 005
0.6 9.93e-004 3.10e—-004 7.00e —005
0.8 3.08e -003 5.33e -004 1.52e -004
1.0 6.57e —-003 7.92e—-004 2.71e—004
Table 9. Comparison of the errors o, for Example 5.
§N 54 é‘5 57 59 59,10
Errors 1.03e-02 3.28e-03 1.17e-03 4.16e—-04 1.26e—-04
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5. CONCLUSIONS

In this study, a matrix-collocation method based on Morgan-Voyce polynomials has
been developed to obtain the approximate solution of Volterra type functional integro-
differential equations of Eq. (1) type. To explain the efficiency and validity of the present
method, five examples have been treated. The obtained results have been demonstrated in the
tables and figures. It is clearly observed from the comparisons of the exact solution and
Morgan-Voyce polynomial solution (Figs. 1, 3, 4 and 7, and Table 1) together with the errors
(Tables 1, 2, 4, 6-9, Figs. 2 and 5) that the present method is an effective, fast and accurate
numerical technique to handle Eq. (1). Numerical values have been immediately obtained, as
seen from Tables 3 and 5. The fact that when the computation limit N is taken sufficiently
large then the precision of the method increases. The present method also contains a simple
algorithm, which leads to easily encode its computer program routine. It is evident that the
present method can be readily modified to deal with partial differential equations.
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