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Abstract. This study deals with the generalized linear Volterra-type functional 

integro-differential equations with mixed delays. A combination between matrix-collocation 

method and Morgan-Voyce polynomials is developed to solve these type equations. In 

addition, an error analysis technique is given to improve the obtained solutions. Numerical 

examples are performed to confirm the efficiency and validity of the method. The comparisons 

are made in tables and figures. The discussions show that the method is fast and precise.  

Keywords: Morgan-Voyce polynomials; Integro-differential equation; Matrix method; 

Collocation points; Error Analysis. 

 

 

1. INTRODUCTION  

 

 

In this study, the Morgan-Voyce matrix-collocation method, which was previously 

used in [1], is developed to solve the linear Volterra-type functional integro-differential 

equation with mixed delays and variable bounds in the general form  
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subject to hybrid conditions 
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where  kP x ,  ijQ x ,  g x ,  rsu x ,  rsv x , and  rsK x,t  are defined on a x,t b   

    rs rsa u x v x b   ; lka , lkb , l , and rs  are appropriate constants. 
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 Linear functional integro-differential equation derived from Eq. (1) is a combination 

of integral, differential, and integro-differential-(difference or delay) equations. These type 

functional equations govern many physical phenomena arising in applied sciences, such as 

mathematics, engineering, electrodynamics, heat and mass transfer, mechanics, physics, 

biology etc. [1-20]. 

 Recently, the mentioned functional equations have been investigated by many authors 

for their analytical and numerical solutions. Most of these equations have no analytical 

solution and so numerical methods are required to obtain their approximate solutions. Some 

of them are Laguerre approach method [8], cubic b-spline scaling function technique [9], 

Dickson matrix collocation method [10-12], varionational iteration method [13], Taylor 

polynomial matrix collocation method [14, 21, 22], homotopy analysis method [15], Bessel 

collocation method [16], Lagrange and Chebyshev interpolation method [17], Legendre-

Gauss collocation method [18] and Morgan-Voyce polynomial method [1]. 

 Our aim in this study is to develop a matrix method based on the first kind Morgan-

Voyce polynomials and to seek the approximate solution of the problem (1)-(2) in the form 

(see [1]) 
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         (3) 

 

where na are unknown coefficients and  nb x  is Morgan-Voyce polynomials, which are 

defined to be (see [23-27])  
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      (4) 

 

Morgan-Voyce polynomials  nb x , which are appeared in electrical ladder networks, contain 

the following important properties [23-27]: 

 The polynomials  nb x  expressed by Eq. (4) are recursively defined by the relation 

 

                                                1 22 2n n nb x x b x b x , n     ,                                       (5) 

 

with  0 1b x   and  1 1b x x  . 

 By Eqs. (4) and (5), the polynomials    ny x b x ,  0 1n , ,  read the second order 

differential equation 

 

           4 2 1 1 0x x y x x y x n n y x       . 

 

 The generating function of  nb x  is of the form 
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2. MATERIALS AND METHODS 

 

 

2.1. MAIN MATRIX RELATIONS 

 

 

In this section, the matrix forms related to Eq. (1) and the conditions (2) are presented. 

For this purpose, the approximate solution (3) of Eq. (1) can be written as the truncated 

Morgan-Voyce series form (see [1]) 

 

   Ny x x b Y ,     (6) 

where 

       0 1 Nx b x ,b x , ,b x   b  and  0 1

T

Ny , y , , yY . 

 

Here, using the first kind Morgan-Voyce polynomials  Nb x , the matrix form  xb  can also 

be written as (see [1]) 

    x xb X M ,     (7) 

where 
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Besides, the relation between the matrix  xX  and its derivative 
   k

xX  yields 
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and 0
T  is a identity matrix in the dimension    1 1N N   . By using the matrix relations 

(6), (7) and (8), it holds that 

  

                                           k k k k k
Ny x y x x x x   b Y X MY X T MY ,                      (9) 

 

and substituting ij ijx x , k i     and rs rsx t , k r     into the matrix relation (9), 

respectively. Then the matrix relations become 

 
       i i
N ij ij ij ijy x x ,     X L T MY ,   (10) 

and 
       r r
N rs rs rs rsy t x ,     X L T MY .   (11) 

 

Note that the matrix  x X  can be formed as [8, 11, 12] 
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On the other hand, the kernel functions   30 1rsK x,t , r , , ,m  and 40 1s , , ,m  can 

be approximated by the following series form [8, 11, 12, 14] 
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. 

 

Thus, Eq. (12) can be stated as the matrix form [8, 11, 12, 14] 

 

     T
rs rsK x,t x t X K X ,     (13) 

where  

   1 1r ,s N N
rs mnk , x ,x, ,x , t ,t , ,t            K X X . 
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Inserting the matrix relations (9), (10), (11), and (13) into Eq. (1), then the matrix 

equation is obtained as 
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2.2. MORGAN-VOYCE MATRIX METHOD 
 

 

In this section, the matrix method is established using matrix equation (14) and the 

collocation points, which are defined to be  
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b a
x a l, l , , ,N

N


   ,    (15) 

 

Substituting the collocation points (15) into the matrix equation (14), a system of the 

matrix relations are obtained as 
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Then, the compact form of this system can be expressed as 

 

   
31 2 4

0 0 0 0 0

mm m mm
k i r

k ij ij ij rs rs rs rs rs

k i j r s

, ,    
    

 
    

 
  P XT Q XL T X K S L T MY G ,    (16) 

 

where  

 

     
   0 1 1 1k k k k N N N

diag P x ,P x , ,P x
  

   P ,  

 

     
   0 1 1 1ij ij ij ij N N N

diag Q x ,Q x , ,Q x
  

   Q , 

 



              Morgan-Voyce Matrix Method for …                                                                                       Mustafa Özel et al.                                                                    

 

www.josa.ro                                                                                                                                                   Mathematics Section  

300 

 

 

 

2
0 0 00

2
1 1 1 1

2

1

1

1

N

N

N
N N N N

x x xX x

X x x x x

X x x x x

  
  
      
  
     

X ,      
   

20 1 1 1N N N
diag x , x , , x

  
   X X X X , 

 

    
2 2

1 1rs rs rs rs N N
diag K ,K , ,K

  
K ,  

 

     
   

2 20 1 1 1rs rs rs rs N N N
diag x , x , , x

  
   S S S S , 

 

       
   

2 2
1 1rs rs rs rs rs rs rs rs N N

, diag , , , , , ,       
  

   L L L L , 

   
2

1 1

T
r r r r

N N  
   T T T T , and      

 0 1 1 1

T

N N
g x g x g x

 
   G . 

 

The fundamental matrix equation (16) of Eq. (1) can be given as 

 

WY G  or  :W G ,     (17) 

where 
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On the other hand, by the relation (9), we can express the matrix relation of the 

conditions (2) as 

                                                    j j   U Y  or j j; 
 U ,                                                   (18) 

such that  
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Consequently, in order to obtain the first kind Morgan-Voyce polynomial solution of 

Eq. (1) subject to the conditions (2), we replace m row(s) matrices in Eq. (18) by any m

row(s) of the matrix equation (17). Thereby we obtain an augmented matrix system as 

 

WY G  or : 
 W G .     (19) 

 

When the rank of the system (19) yields N+1, it holds that  
1

Y W G . The 

approximate solution is obtained after inserting the matrix Y into Eq. (3). 
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3. ERROR ANALYSIS VIA RESIDUAL FUNCTION 

 

 

In recent years, an efficient residual error analysis has been developed to correct the 

approximate solutions for some methods [8, 11, 12, 28]. Here, the present method is applied 

to this error analysis. Thus, the Morgan-Voyce polynomial solution ( )Ny x  can be improved. 

By substituting this solution into Eq. (1), the residual function stands for 

 

                                                               ( ) ( ) ( )N NR x L y x g x  ,                                                   (20) 

where 
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By considering the exact solution  y x , the error function can be written as 

 

                                                             N Ne x y x y x  .                                                   (21) 

 

By Eqs. (1), (2), (20), and (21), the error equation is  

  

                                               ( ) ( ) ( ) ( )N N NL e x L y x L y x R x    ,                                  (22) 

 

subject to the homogeneous hybrid conditions  
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    .                                              (23) 

 

Eqs. (22) and (23) constitute an error problem, which can be readily solved via the 

procedure given in Section 2.2. Thus, the estimated error function is of the form 
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   . 

 

such that the corrected Morgan-Voyce polynomial solution , ,( ) ( ) ( )N M N N My x y x e x   and the 

corrected error function , ,( ) ( ) ( )N M N ME x y x y x   are obtained.  

Furthermore, let us give an error computation N , which is used to specifically 

compare the results in this study. N  is defined to be (see [20]) 

 

 2
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N N l

l

e x
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  , 

 

where lx  is the collocation points (15). We can also compute the error ,N M , which is as 

follows: 
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  , 

 

where 
, ( )N ME x  is the corrected error function. 

 

 

4. NUMERICAL EXAMPLES 

 

 

In this section, five illustrative examples are treated to test the efficiency and validity 

of the present method. Numerical calculations have been performed using a computer 

program module on Matlab and Mathematica softwares. 

 

Example 1. [3] Consider the second-order neutral differential equation with proportional 

delays 
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subject to the initial conditions    0 0 0y y  . By Eq. (16), the fundamental matrix 

equation of the problem can be constructed as 
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The matrix system of Eq. (25) is computed as  

                                                  

7 1511
4 4 4

7 27 51 1
4 8 8 4

7 19
4 2

: 1

; :

4 : 1

   
 

    
     

W G ,                                            (26) 

 

and the matrix forms for the initial conditions are obtained as 

 

                              0 0 1 1 1 : 0; U  and    1 1 0 1 3 : 0; U .                        (27) 

 

By using the system (26) and the condition matrices (27), we obtain the solution 

  2

2y x x , which is the exact solution. While the present method directly reaches the exact 

solution, a direct method based on Chebyshev cardinal functions [3] has yielded the error 

6 16 64. e  on avarege. 

 

Example 2. Consider the Volterra type functional integral equation with variable bounds 

    

                              
0.05 0.95

0 0

cos sin

x x

y x g x x t y t dt x t y t dt      ,  0,1x ,              (28) 

where 

 

             0.25cos 0.9 1.25 0.025 cos 0.25sin 0.9 0.25 0.475 sin .g x x x x x x x        

 

The exact solution of Eq. (28) is    cosy x x . The fundamental matrix equation 

yields 
 

    0 0
0 00 00 00 00 00 01 01 01 01 01, ,       P X X K S L T X K S L T MY G . 

 

After following the procedure of our method, we can solve the augmented matrix and 

thus the Morgan-Voyce polynomial solutions are obtained in the form (3) for 2 3 5 6N , , ,  on 

 0 1, . The comparison of the exact and Morgan-Voyce polynomial solutions are given in  

Fig. 1 and Table 1. The error computations are simulated in Fig. 2. 
 

 
Figure 1. Comparison of the exact solution and 

Morgan-Voyce polynomial solution of Example 2. 

 
Figure 2. Comparison of the actual absolute errors 

of Example 2. 
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Table 1. Numerical results of the exact solution, Morgan-Voyce polynomial solution, and mean absolute 

errors for Example 2. 

x    cosi iy x x  N=2 N=3 N=5 N=6 

0 1 1 1 1 1 

0.1 0.995 0.98613 0.99554 0.995 0.995 

0.2 0.98007 0.96759 0.98053 0.98007 0.98007 

0.3 0.95534 0.94438 0.95547 0.95534 0.95534 

0.4 0.92106 0.9165 0.9209 0.92106 0.92106 

0.5 0.87758 0.88395 0.87732 0.87758 0.87758 

0.6 0.82534 0.84673 0.82526 0.82533 0.82534 

0.7 0.76484 0.80484 0.76524 0.76483 0.76485 

0.8 0.69671 0.75828 0.69778 0.69668 0.69673 

0.9 0.62161 0.70705 0.6234 0.62153 0.62167 

1 0.5403 0.65115 0.54262 0.54013 0.54044 

Mean abs.error n.a. 0.03295 6.58e-04 2.74e-05 2.20e-05 

 

 

Example 3. [19] Consider the second-order neutral Volterra integro-differential equation 

 

                  
1

1 1 sin sin1

x

y x x y x y x x x xy t y t ty t dt



              ,  1,1x  ,

                           

subject to the initial conditions  1 cos1y    and  1 sin1y   . The exact solution of this 

problem is   cosy x x . This problem is solved for 10,  11,  14N   and 11,  12,  15M   on 

 1,1 . In Table 2, the absolute and corrected absolute errors of the present method are 

compared with L
2
 and L

∞
 errors founds in [19]. The actual and estimated absolute errors are 

also illustrated in Fig. 5. It is clearly seen from Figs. 3-4 and Table 2 that the Morgan-Voyce 

polynomial solutions are very close to the exact solution. In addition, when CPU time in 

Table 3 is investigated, the well-equipped computer is not required to employ the present 

method. 

 

Table 2. Comparison of the present numerical results with other existing ones for Example 3. 

ix   14 ie x   14,15 iE x   16 ie x  
2L L  

errors [19] 

1.0

0.5

  0.0

  0.5

  1.0





 

3.33 016

3.33 016

6.66 016

7.77 016

2.43 014

e

e

e

e

e











 

2.22 016

5.55 016

4.44 016

0

1.02 014

e

e

e

e









 

2.22 016

4.44 016

4.44 016

4.44 016

1.55 014

e

e

e

e

e











 

4.21 014e  (
2L , N=14) 

8.96 014e ( L
, N=14) 

4.19 014e  (
2L , N=16) 

9.30 014e ( L
, N=16) 

- 

 

 
Table 3. CPU time(s) of the present method in terms of the different N for Example 3. 

 Ny x   4y x   10y x   14y x   16y x  

Time (sec.) 0.24960 0.49920 1.24801 1.88761 
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Figure 3. Comparison of the exact solution and Morgan-Voyce polynomial solution on [-1,1] for  

Example 3. 

 

 
 

Figure 4. Oscillation of the exact solution and Morgan-Voyce polynomial solution on [-1,11] for  

Example 3. 
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Figure 5. Comparison of the actual and estimated absolute errors for Example 3. 

 

Example 4. [20] Consider the Fredholm-Volterra integral equation 

 

                            
 1

0 0

1

h x

x h tx x x ty x e e h x e y h t dt e y t dt
       ,  0,1x  

 

where    / 2,  h x x x . The exact solution of this equation is   xy x e . The equation is 

treated for 5,  8N   and M=9. In Table 4, the present values of the error N  are compared 

with other existing methods [20]. The Morgan-Voyce polynomial solutions are obtained by 

the present method in seconds as seen in Table 5. As seen from Tables 6 and 7, the better 

numerical results are obtained, as both N and M are increased. In addition, the comparisons of 

the residual functions are plotted in Fig. 6. 

 

Table 4. Comparison of the errors N  for Example 4. 

 h x  

 

N, M 

/ 2x  x 

Present 

meth. 

Lagrange 

meth. [20] 

Taylor 

meth. [20] 

Present 

meth. 

Lagrange 

meth. [20] 

Taylor 

meth. [20] 

5

8

8,9

 

3.78 004

5.72 007

1.27 013

e

e

e






 

3.71 007

6.74 007

e

e




n.a. 

3.36 004

5.77 007

e

e




n.a. 

5.93 005

7.80 008

1.73 013

e

e

e






 

4.03 007

9.50 007

e

e




n.a. 

1.41 004

2.53 007

e

e




n.a. 
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Table 5. CPU time(s) of the present method in terms of different N for Example 4. 

 h x  

 Ny x  

  / 2x  x 

 5y x   8y x   5y x   8y x  

Time (sec.) 0.17160 0.65520 0.14040 0.53040 

 
Table 6. Comparison of the actual, estimated and corrected absolute errors for Example 4 with h(x)=x/2. 

ix   5 ie x   8,9 ie x   8,9 iE x  

0

0.2

0.4

0.6

0.8

1.0

 

6.494 007

7.710 007

3.661 006

4.795 005

2.442 004

8.067 004

e

e

e

e

e

e













 

1.241 010

1.779 010

3.850 010

2.038 008

2.407 007

1.529 006

e

e

e

e

e

e













 

1.513 013

1.433 013

1.242 013

1.401 013

2.548 013

2.031 013

e

e

e

e

e

e













 

 
Table 7. Comparison of the actual, estimated and corrected absolute errors for Example 4 with h(x)=x. 

ix   5 ie x   8,9 ie x   8,9 iE x  

0

0.2

0.4

0.6

0.8

1.0

 

2.269 006

1.933 006

8.056 006

3.880 005

1.266 004

2.514 013

e

e

e

e

e

e













 

2.907 009

4.393 009

8.834 009

3.056 008

1.393 007

5.155 011

e

e

e

e

e

e













 

1.426 013

1.476 013

8.615 014

1.178 013

2.914 013

4.441 016

e

e

e

e

e

e













 

 

 
Figure 6. Comparison of the residual functions for Example 4 with h(x)=x/2. 
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Example 5. Consider the second order Volterra type integro-differential-difference equation 

with variable bounds 

                                                
1

1 1

x

x

xy x g x x t y t dt


      ,  0,1x ,     

where 

         cos 1 cos 2 sin 2 sin 1g x x x x x x        , 

 

subject to the initial conditions  0 0y   and  0 1y  . The exact solution is    siny x x .  

All comparison results for the relations between exact and approximate solutions are 

illustrated in Fig. 7. It is easily seen from Tables 8 and 9 that the approximate Morgan-Voyce 

polynomial solutions are improved via the residual error analysis. 
 

 
Figure 7. Comparison of the exact solution and Morgan-Voyce polynomial solution for Example 5. 

 

Table 8. Comparison of the actual and corrected absolute errors for Example 5. 

ix   5 ie x   9 ie x   9,10 iE x  

0

0.2

0.4

0.6

0.8

1.0

 

0

7.52 005

7.90 005

9.93 004

3.08 003

6.57 003

e

e

e

e

e











 

0

3.50 005

1.40 004

3.10 004

5.33 004

7.92 004

e

e

e

e

e











 

0

3.30 006

2.28 005

7.00 005

1.52 004

2.71 004

e

e

e

e

e











 

 

Table 9. Comparison of the errors N  for Example 5. 

N  4  5  7  9  9,10  

Errors 1.03 02e  3.28 03e  1.17 03e  4.16 04e  1.26 04e  
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5. CONCLUSIONS 

 

 

In this study, a matrix-collocation method based on Morgan-Voyce polynomials has 

been developed to obtain the approximate solution of Volterra type functional integro-

differential equations of Eq. (1) type. To explain the efficiency and validity of the present 

method, five examples have been treated. The obtained results have been demonstrated in the 

tables and figures. It is clearly observed from the comparisons of the exact solution and 

Morgan-Voyce polynomial solution (Figs. 1, 3, 4 and 7, and Table 1) together with the errors 

(Tables 1, 2, 4, 6-9, Figs. 2 and 5) that the present method is an effective, fast and accurate 

numerical technique to handle Eq. (1). Numerical values have been immediately obtained, as 

seen from Tables 3 and 5. The fact that when the computation limit N is taken sufficiently 

large then the precision of the method increases. The present method also contains a simple 

algorithm, which leads to easily encode its computer program routine. It is evident that the 

present method can be readily modified to deal with partial differential equations. 
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