GENERALIZATION OF PTOLEMY'S THEOREM

TRAN QUANG HUNG ${ }^{1}$

Manuscript received: 01.12.2018; Accepted paper: 12.03.2019;
Published online: 30.06.2019.

Abstract. We establish a generalization of Ptolemy's theorem and we also deduce Ptolemy's inequality and its strengthened version from this generalization.

Keywords: Ptolemy's theorem, Ptolemy's inequality, geometry.

1. INTRODUCTION

Ptolemy's theorem is known as one of the most famous theorems in Euclidean geometry. It also has a lot of application. It usually uses to to prove the important theorems and problems in Euclidean geometry [1-4].

Theorem 1 (Ptolemy's theorem). If the vertices of cyclic quadrilateral are A, B, C, and D in order, then

$$
A C \cdot B D=B C \cdot A D+A B \cdot C D
$$

[^0]Theorem 2 (Converse of Ptolemy's theorem). In convex quadrilateral $A B C D$. If

$$
A C \cdot B D=B C \cdot A D+A B \cdot C D
$$

then $A B C D$ can be inscribed in a circle.
Theorem 3 (Ptolemy's inequality). Given quadrilateral $A B C D$ then

$$
A D \cdot B D+A B \cdot C D \geq A B \cdot C D .
$$

2. MAIN THEOREM

In this section, we shall give a generalization of Ptolemy's theorem. We also give three consequences of this main theorem. The first, we introduce a lemma.

Lemma. Let A, B, and C be three points on plane. Denote by $\angle A B C=\beta$ and $\angle A C B=\gamma$ then

$$
B C=A B \cos \beta+A C \cos \gamma
$$

Proof. Apply law of cosine, we have

$$
\cos \beta=\frac{B A^{2}+B C^{2}-C A^{2}}{2 \cdot B A \cdot B C}
$$

and

$$
\cos \gamma=\frac{C A^{2}+C B^{2}-A B^{2}}{2 \cdot C A \cdot C B} .
$$

From this, we deduce

$$
\begin{aligned}
& A B \cos \beta+A C \cos \gamma=A B \cdot \frac{B A^{2}+B C^{2}-C A^{2}}{2 \cdot B A \cdot B C}+A C \cdot \frac{C A^{2}+C B^{2}-A B^{2}}{2 \cdot C A \cdot C B} \\
& =\frac{B A^{2}+B C^{2}-C A^{2}+C A^{2}+C B^{2}-A B^{2}}{2 \cdot B C} \\
& =B C .
\end{aligned}
$$

We complete the proof.
Theorem 4 (Generalization of Ptolemy's theorem). Let $A B C D$ be a convex quadrilateral. Denote the absolute difference of angles by

$$
\psi=|\angle A D B-\angle A C B|=|\angle D A C-\angle D B C|
$$

and

$$
\phi=|\angle A B D-\angle A C D|=|\angle B A C-\angle B D C| .
$$

Then

$$
A C \cdot B D=A D \cdot B C \cdot \cos \psi+A B \cdot C D \cdot \cos \phi
$$

Proof. Let P is the point interior quadrilateral $A B C D$ such that $\triangle A P D$ is similar to $\triangle A B C$. Thus, also $\triangle A P B$ is simlar to $\triangle A D C$. We have the product of lengths

$$
\begin{equation*}
A D \cdot B C=P D \cdot A C \Rightarrow P D=\frac{A D \cdot B C}{A C} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A B \cdot C D=P B \cdot A C \Rightarrow P B=\frac{A B \cdot C D}{A C} . \tag{2}
\end{equation*}
$$

Note that,

$$
\angle P B D=|\angle P B A-\angle A B D|=|\angle A C D-\angle A B D|=\phi
$$

and

$$
\angle P D B=|\angle P D A-\angle A D B|=|\angle A C B-\angle A D B|=\psi .
$$

Now apply lemma for three points P, B, and D with $\angle P B D=\phi$ and $\angle P D B=\psi$, we have

$$
\begin{equation*}
B D=P D \cdot \cos \psi+P B \cdot \cos \phi \tag{3}
\end{equation*}
$$

From (1), (2), and (3), we obtain

$$
B D=\frac{A D \cdot B C}{A C} \cdot \cos \psi+\frac{A B \cdot C D}{A C} \cdot \cos \phi
$$

or

$$
A C \cdot B D=A D \cdot B C \cdot \cos \psi+A B \cdot C D \cdot \cos \phi
$$

We complete our proof.

3. SOME CONSEQUENCES

In this section, we give some consequences of the thereom 4.
Consequence 1 (Ptolemy's inequality). Let $A B C D$ be a quarilateral then

$$
A C \cdot B D \leq A D \cdot B C+A B \cdot C D .
$$

Proof. Because $\cos \psi \leq 1$ and $\cos \phi \leq 1$, from Theorem 4, we have

$$
A C \cdot B D=A D \cdot B C \cdot \cos \psi+A B \cdot C D \cdot \cos \phi \leq A D \cdot B C+A B \cdot C D .
$$

We complete the proof.
Consequence 2 (Ptolemy's theorem and its converse). Let $A B C D$ be a quarilateral then $A B C D$ is cyclic if only if

$$
A C \cdot B D=A D \cdot B C+A B \cdot C D
$$

Proof. If $A B C D$ is cyclic then

$$
\psi=|\angle A D B-\angle A C B|=|\angle D A C-\angle D B C|=0
$$

and

$$
\phi=|\angle A B D-\angle A C D|=|\angle B A C-\angle B D C|=0,
$$

thus $\cos \psi=\cos \phi=1$. From Theorem 4, we have

$$
A C \cdot B D=A D \cdot B C \cdot \cos \psi+A B \cdot C D \cdot \cos \phi=A D \cdot B C+A B \cdot C D .
$$

If $A C \cdot B D=A D \cdot B D+A B \cdot C D$, from Theorem 4, we have
$A D \cdot B C \cdot \cos \psi+A B \cdot C D \cdot \cos \phi=A C \cdot B D=A D \cdot B C+A B \cdot C D \geq A D \cdot B C \cdot \cos \psi+A B \cdot C D \cdot \cos \phi$.
Equality occurs iff $\cos \psi=\cos \phi=1$, thus $\psi=\phi=0$. We deduce

$$
|\angle A D B-\angle A C B|=|\angle D A C-\angle D B C|=0
$$

and

$$
|\angle A B D-\angle A C D|=|\angle B A C-\angle B D C|=0
$$

so $A B C D$ is cyclic. We complete the proof.
Consequence 3 (Strengthened version of the Ptolemy's inequality using secant function). Let $A B C D$ be a convex quadrilateral. Denote the absolute difference of angles by

$$
\psi=|\angle A D B-\angle A C B|=|\angle D A C-\angle D B C|
$$

and

$$
\phi=|\angle A B D-\angle A C D|=|\angle B A C-\angle B D C| .
$$

Let $k=\min \{\sec \psi, \sec \phi\}$ then

$$
A C \cdot B D \leq k \cdot A C \cdot B C \leq A D \cdot B D+A B \cdot C D .
$$

Proof. Obvious $k=\min \{\sec \psi, \sec \phi\} \geq 1$ so $A C \cdot B D \leq k \cdot A C \cdot B C$.
Note that, $A D \cdot B C>0$ and $A B \cdot C D>0$, so from Theorem 4, we have
$A C \cdot B D=A D \cdot B C \cdot \cos \psi+A B \cdot C D \cdot \cos \phi \leq(A D \cdot B C+A B \cdot C D) \cdot \max \{\cos \psi, \cos \phi\}$, thus

$$
\begin{aligned}
A D \cdot B C+A B \cdot C D & \geq \frac{A C \cdot B D}{\max \{\cos \psi, \cos \phi\}} \\
& =A C \cdot B D \cdot \min \left\{\frac{1}{\cos \psi}, \frac{1}{\cos \phi}\right\} \\
& =A C \cdot B D \cdot \min \{\sec \psi, \sec \phi\} \\
& =k \cdot A C \cdot B D .
\end{aligned}
$$

We complete the proof.

4. CONCLUSIONS

The paper has proved the theorem 4 which can be consider as a generalization of Ptolemy's theorem. We also point out that Ptolemy's inequality, Ptolemy's theorem and its converse and the strengthened version of Ptolemy's inequality as the consequences of our general theorem.

REFERENCES

[1] Weisstein, E.W., Ptolemy's Theorem, MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PtolemysTheorem.html
[2] Bogomolny, A., Ptolemy's Theorem. http://www.cut-the-knot.org/proofs/ptolemy.shtml
[3] Coxeter, H.S.M., Introduction to Geometry, $2^{\text {nd }}$ Edition, John Wiley \& Sons, Hoboken, N.J., 1969.
[4] Coxeter, H.S.M., Greitzer, S.L., Geometry Revisited, The Math. Assoc. of America, 1967.

[^0]: ${ }^{1}$ Hanoi University of Science, High School for Gifted Students, Hanoi, Vietnam.
 E-mail: analgeomatica@gmail.com.

