ORIGINAL PAPER

GENERALIZATION OF PTOLEMY'S THEOREM

TRAN QUANG HUNG¹

Manuscript received: 01.12.2018; Accepted paper: 12.03.2019; Published online: 30.06.2019.

Abstract. We establish a generalization of Ptolemy's theorem and we also deduce Ptolemy's inequality and its strengthened version from this generalization. Keywords: Ptolemy's theorem, Ptolemy's inequality, geometry.

1. INTRODUCTION

Ptolemy's theorem is known as one of the most famous theorems in Euclidean geometry. It also has a lot of application. It usually uses to to prove the important theorems and problems in Euclidean geometry [1-4].

Theorem 1 (Ptolemy's theorem). If the vertices of cyclic quadrilateral are A, B, C, and D in order, then

¹ Hanoi University of Science, High School for Gifted Students, Hanoi, Vietnam. E-mail: <u>analgeomatica@gmail.com</u>.

Theorem 2 (Converse of Ptolemy's theorem). In convex quadrilateral ABCD. If

$$AC \cdot BD = BC \cdot AD + AB \cdot CD$$

then *ABCD* can be inscribed in a circle.

Theorem 3 (Ptolemy's inequality). Given quadrilateral ABCD then

 $AD \cdot BD + AB \cdot CD \ge AB \cdot CD.$

2. MAIN THEOREM

In this section, we shall give a generalization of Ptolemy's theorem. We also give three consequences of this main theorem. The first, we introduce a lemma.

Lemma. Let A, B, and C be three points on plane. Denote by $\angle ABC = \beta$ and $\angle ACB = \gamma$ then

$$\cos\beta = \frac{BA^2 + BC^2 - CA^2}{2 \cdot BA \cdot BC}$$

and

$$\cos\gamma = \frac{CA^2 + CB^2 - AB^2}{2 \cdot CA \cdot CB}.$$

www.josa.ro

From this, we deduce

$$AB\cos\beta + AC\cos\gamma = AB \cdot \frac{BA^2 + BC^2 - CA^2}{2 \cdot BA \cdot BC} + AC \cdot \frac{CA^2 + CB^2 - AB^2}{2 \cdot CA \cdot CB}$$
$$= \frac{BA^2 + BC^2 - CA^2 + CA^2 + CB^2 - AB^2}{2 \cdot BC}$$
$$= BC.$$

We complete the proof.

Theorem 4 (Generalization of Ptolemy's theorem). Let *ABCD* be a convex quadrilateral. Denote the absolute difference of angles by

 $\psi = |\angle ADB - \angle ACB| = |\angle DAC - \angle DBC|$

and

$$\phi = |\angle ABD - \angle ACD | = |\angle BAC - \angle BDC |.$$

Then

 $AC \cdot BD = AD \cdot BC \cdot \cos \psi + AB \cdot CD \cdot \cos \phi.$

Proof. Let *P* is the point interior quadrilateral *ABCD* such that $\triangle APD$ is similar to $\triangle ABC$. Thus, also $\triangle APB$ is similar to $\triangle ADC$. We have the product of lengths

$$AD \cdot BC = PD \cdot AC \Longrightarrow PD = \frac{AD \cdot BC}{AC}$$
 (1)

and

$$AB \cdot CD = PB \cdot AC \Longrightarrow PB = \frac{AB \cdot CD}{AC}.$$
 (2)

Note that,

$$\angle PBD = |\angle PBA - \angle ABD| = |\angle ACD - \angle ABD| = \phi$$

and

$$\angle PDB = | \angle PDA - \angle ADB | = | \angle ACB - \angle ADB | = \psi$$

Now apply lemma for three points P, B, and D with $\angle PBD = \phi$ and $\angle PDB = \psi$, we have

$$BD = PD \cdot \cos \psi + PB \cdot \cos \phi. \quad (3)$$

From (1), (2), and (3), we obtain

$$BD = \frac{AD \cdot BC}{AC} \cdot \cos \psi + \frac{AB \cdot CD}{AC} \cdot \cos \phi$$

or

$$AC \cdot BD = AD \cdot BC \cdot \cos \psi + AB \cdot CD \cdot \cos \phi.$$

We complete our proof.

3. SOME CONSEQUENCES

In this section, we give some consequences of the thereom 4.

Consequence 1 (Ptolemy's inequality). Let *ABCD* be a quarilateral then

$$AC \cdot BD \le AD \cdot BC + AB \cdot CD.$$

Proof. Because $\cos \psi \le 1$ and $\cos \phi \le 1$, from Theorem 4, we have

$$AC \cdot BD = AD \cdot BC \cdot \cos \psi + AB \cdot CD \cdot \cos \phi \le AD \cdot BC + AB \cdot CD.$$

We complete the proof.

Consequence 2 (Ptolemy's theorem and its converse). Let *ABCD* be a quarilateral then *ABCD* is cyclic if only if

$$AC \cdot BD = AD \cdot BC + AB \cdot CD.$$

Proof. If ABCD is cyclic then

$$\psi = \mid \angle ADB - \angle ACB \mid = \mid \angle DAC - \angle DBC \mid = 0$$

and

$$\phi = |\angle ABD - \angle ACD | = |\angle BAC - \angle BDC | = 0,$$

thus $\cos \psi = \cos \phi = 1$. From Theorem 4, we have

$$AC \cdot BD = AD \cdot BC \cdot \cos \psi + AB \cdot CD \cdot \cos \phi = AD \cdot BC + AB \cdot CD.$$

If $AC \cdot BD = AD \cdot BD + AB \cdot CD$, from Theorem 4, we have

 $AD \cdot BC \cdot \cos \psi + AB \cdot CD \cdot \cos \phi = AC \cdot BD = AD \cdot BC + AB \cdot CD \ge AD \cdot BC \cdot \cos \psi + AB \cdot CD \cdot \cos \phi.$

Equality occurs iff $\cos \psi = \cos \phi = 1$, thus $\psi = \phi = 0$. We deduce

$$|\angle ADB - \angle ACB| = |\angle DAC - \angle DBC| = 0$$

and

$$|\angle ABD - \angle ACD| = |\angle BAC - \angle BDC| = 0$$

so *ABCD* is cyclic. We complete the proof.

Consequence 3 (Strengthened version of the Ptolemy's inequality using secant function). Let *ABCD* be a convex quadrilateral. Denote the absolute difference of angles by

$$\psi = \mid \angle ADB - \angle ACB \mid = \mid \angle DAC - \angle DBC \mid$$

and

$$\phi = |\angle ABD - \angle ACD| = |\angle BAC - \angle BDC|.$$

Let $k = \min\{\sec \psi, \sec \phi\}$ then

 $AC \cdot BD \le k \cdot AC \cdot BC \le AD \cdot BD + AB \cdot CD.$

Proof. Obvious $k = \min\{\sec \psi, \sec \phi\} \ge 1$ so $AC \cdot BD \le k \cdot AC \cdot BC$. Note that, $AD \cdot BC > 0$ and $AB \cdot CD > 0$, so from Theorem 4, we have

$$AC \cdot BD = AD \cdot BC \cdot \cos \psi + AB \cdot CD \cdot \cos \phi \le (AD \cdot BC + AB \cdot CD) \cdot \max\{\cos \psi, \cos \phi\},\$$

thus

$$AD \cdot BC + AB \cdot CD \geq \frac{AC \cdot BD}{\max\{\cos\psi, \cos\phi\}}$$

= $AC \cdot BD \cdot \min\{\frac{1}{\cos\psi}, \frac{1}{\cos\phi}\}$
= $AC \cdot BD \cdot \min\{\sec\psi, \sec\phi\}$
= $k \cdot AC \cdot BD.$

We complete the proof.

4. CONCLUSIONS

The paper has proved the theorem 4 which can be consider as a generalization of Ptolemy's theorem. We also point out that Ptolemy's inequality, Ptolemy's theorem and its converse and the strengthened version of Ptolemy's inequality as the consequences of our general theorem.

REFERENCES

- [1] Weisstein, E.W., *Ptolemy's Theorem*, MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PtolemysTheorem.html
- [2] Bogomolny, A., *Ptolemy's Theorem*. http://www.cut-the-knot.org/proofs/ptolemy.shtml
- [3] Coxeter, H.S.M., *Introduction to Geometry*, 2nd Edition, John Wiley & Sons, Hoboken, N.J., 1969.
- [4] Coxeter, H.S.M., Greitzer, S.L., *Geometry Revisited*, The Math. Assoc. of America, 1967.