ORIGINAL PAPER SURFACE FAMILY WITH A COMMON NATURAL GEODESIC LIFT OF A TIMELIKE CURVE IN MINKOWSKI 3-SPACE

EVREN ERGUN¹, ERGIN BAYRAM², EMIN KASAP²

Manuscript received: 10.10.2018; Accepted paper: 22.03.2019; Published online: 30.06.2019.

Abstract. In the present paper, we find a surface family possessing the natural lift of a given timelike curve as a geodesic in Minkowski 3-space. We express necessary and sufficient conditions for the given curve such that its natural lift is a geodesic on any member of the surface family. Finally, we illustrate the method with some examples.

Keywords: Surface family, natural lift, geodesic.

1. INTRODUCTION

Minkowski 3-space \mathbb{IR}_1^3 is the vector space \mathbb{IR}^3 equipped with the Lorentzian inner product g given by

$$g(X,X) = -x_1^2 + x_2^2 + x_3^2$$

where $X = (x_1, x_2, x_3) \in \mathbb{IR}^3$. A vector $X = (x_1, x_2, x_3) \in \mathbb{IR}^3$ is said to be timelike if g(X, X) < 0, spacelike if g(X, X) > 0 or X = 0 and lightlike (or null) if g(X, X) = 0 and $x \neq 0$. Similarly, an arbitrary curve $\alpha = \alpha(s)$ in \mathbb{IR}_1^3 can locally be timelike, spacelike or null (lightlike), if all of its velocity vectors $\alpha'(s)$ are respectively timelike, spacelike or null (lightlike), for every $s \in I \subset \mathbb{IR}$.

A lightlike vector X is said to be positive (resp. negative) if and only if $x_1 > 0$ (resp. $x_1 < 0$) and a timelike vector X is said to be positive (resp. negative) if and only if $x_1 > 0$ (resp. $x_1 < 0$). The norm of a vector X is defined by $||X||_{u} = \sqrt{|g(X,X)|}$ [1].

The vectors $X = (x_1, x_2, x_3)$, $Y = (y_1, y_2, y_3) \in \mathbb{R}^3_1$ are orthogonal if and only if g(X, X) = 0 [2].

Now let X and Y be two vectors in \mathbb{IR}_1^3 , then the Lorentzian cross product is given by [3]

¹Ondokuz Mays University, Çarşamba Chamber of Commerce Vocational School, Çarşamba, Samsun, Turkey. E-mail: <u>eergun@omu.edu.tr</u>.

²Ondokuz Mays University, Faculty of Arts and Sciences, Department of Mathematics, Samsun, Turkey. E-mail: <u>erginbayram@yahoo.com</u>; <u>kasape@omu.edu.tr</u>.

$$X \times Y = \begin{vmatrix} \vec{e}_1 & -\vec{e}_2 & -\vec{e}_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = (x_2 y_3 - x_3 y_2, x_1 y_3 - x_3 y_1, x_2 y_1 - x_1 y_2).$$

We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve α . Then *T*, *N* and *B* are the tangent, the principal normal and the binormal vector of the curve α , respectively.

Let α be a unit speed timelike curve with curvature κ and torsion τ . So, T is a timelike vector field, N and B are spacelike vector fields. For these vectors, we can write

$$T \times N = -B$$
, $N \times B = T$, $B \times T = -N$,

where \times is the Lorentzian cross product in \mathbb{IR}_1^3 . The binormal vector field B(s) is the unique spacelike unit vector field perpendicular to the timelike plane $\{T(s), N(s)\}$ at every point $\alpha(s)$ of α , such that $\{T, N, B\}$ has the same orientation as \mathbb{IR}_1^3 . Then, Frenet formulas are given by [4]

$$T' = \kappa N, N' = \kappa T + \tau B, B' = -\tau N.$$

Let α be a unit speed spacelike curve with spacelike binormal. Now, T and B are spacelike vector fields and N is a timelike vector field. In this situation,

$$T \times N = -B$$
, $N \times B = -T$, $B \times T = N$.

The binormal vector field B(s) is the unique spacelike unit vector field perpendicular to the timelike plane $\{T(s), N(s)\}$ at every point $\alpha(s)$ of α , such that $\{T, N, B\}$ has the same orientation as IR^3_1 . Then, Frenet formulas are given by [4]

$$T' = \kappa N, N' = \kappa T + \tau B, B' = \tau N.$$

Let α be a unit speed spacelike curve with timelike binormal. Now, T and N are spacelike vector fields and B is a timelike vector field. In this situation,

$$T \times N = B$$
, $N \times B = -T$, $B \times T = -N$.

The binormal vector field B(s) is the unique timelike unit vector field perpendicular to the spacelike plane $\{T(s), N(s)\}$ at every point $\alpha(s)$ of α , such that $\{T, N, B\}$ has the same orientation as IR_{1}^{3} . Then, Frenet formulas are given by [4]

$$T' = \kappa N, N' = -\kappa T + \tau B, B' = \tau N.$$

Lemma 1. Let X and Y be nonzero Lorentz orthogonal vectors in \mathbb{IR}_1^3 . If X is timelike, then Y is spacelike [2].

Lemma 2.Let X and Y be positive (negative) timelike vectors in IR_1^3 . Then

$$g(X,Y) \leq \|X\| \|Y\|$$

whit equality if and only if X and Y are linearly dependent [2].

Lemma 3.

i) Let X and Y be positive (negative) timelike vectors in IR_1^3 . By Lemma 2, there is a unique nonnegative real number $\phi(X,Y)$ such that

$$g(X,Y) = ||X|| ||Y|| \cosh \phi(X,Y).$$

The Lorentzian timelike angle between X and Y is defined to be $\phi(X,Y)$. ii) Let X and Y be spacelike vectors in \mathbb{IR}_1^3 that span a spacelike vector subspace. Then we have

$$\left|g\left(X,Y\right)\right| \leq \left\|X\right\| \left\|Y\right\|.$$

Hence, there is a unique real number $\phi(X,Y)$ between 0 and π such that

$$g(X,Y) = ||X|| ||Y|| \cos \phi(X,Y).$$

 $\phi(X,Y)$ is defined to be the Lorentzian spacelike angle between X and Y [2]. iii) Let X and Y be spacelike vectors in \mathbb{IR}_1^3 that span a timelike vector subspace. Then, we

have

$$g(X,Y) > ||X|| ||Y||.$$

Hence, there is a unique positive real number $\phi(X,Y)$ between 0 and π such that

$$\left|g\left(X,Y\right)\right| = \left\|X\right\| \left\|Y\right\| \cosh\phi(X,Y).$$

 $\phi(X,Y)$ is defined to be the Lorentzian timelike angle between X and Y [2].

iv) Let X be a spacelike vector and Y be a positive timelike vector in IR_1^3 . Then there is a unique nonnegative real number $\phi(X,Y)$ such that

$$|g(X,Y)| = ||X|| ||Y|| \sinh \phi(X,Y).$$

 $\phi(X,Y)$ is defined to be the Lorentzian timelike angle between X and Y [2].

Let *P* be a surface in \mathbb{IR}^3_1 and let $\alpha : I \to P$ be a parametrized curve. α is called an integral curve of *X* if

$$\frac{d}{ds}(\alpha(s)) = X(\alpha(s)), \text{ (for all } t \in I),$$

where X is a smooth tangent vector field on P [1]. We have

$$TP = \bigcup_{p \in P} T_p P = \chi(P),$$

where $T_p P$ is the tangent space of P at p and $\chi(P)$ is the space of tangent vector fields on P.

For any parametrized curve $\alpha : I \to P$, $\overline{\alpha} : I \to TP$ is given by

$$\overline{\alpha}(s) = (\alpha(s), \alpha'(s)) = \alpha'(s)|_{\alpha(s)}$$
(1)

is called the natural lift of α on TP [5].

Let $\alpha(s)$, $L_1 \le s \le L_2$, be an arc length timelike curve. Then, the natural lift $\overline{\alpha}$ of α is a spacelike curve with timelike or spacelike binormal. We have following relations between the Frenet frame $\{T(s), N(s), B(s)\}$ of α and the Frenet frame $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ of $\overline{\alpha}$. **a**) Let the natural lift $\overline{\alpha}$ of α is a spacelike curve with timelike binormal.

i) If the Darboux vector W of the curve α is a spacelike vector, then we have

$$\begin{pmatrix} \overline{T}(s) \\ \overline{N}(s) \\ \overline{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ \cosh\theta & 0 & \sinh\theta \\ \sinh\theta & 0 & \cosh\theta \end{pmatrix} \begin{pmatrix} T(s) \\ N(s) \\ B(s) \end{pmatrix}$$
(2)

ii) If *W* is a timelike vector, then we have

$$\begin{pmatrix} \overline{T}(s) \\ \overline{N}(s) \\ \overline{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ \sinh \theta & 0 & \cosh \theta \\ \cosh \theta & 0 & \sinh \theta \end{pmatrix} \begin{pmatrix} T(s) \\ N(s) \\ B(s) \end{pmatrix}$$
(3)

b) Let the natural lift $\overline{\alpha}$ of α is a spacelike curve with spacelike binormal. **i**) If *W* is a spacelike vector, then we have

$$\begin{pmatrix} \overline{T}(s) \\ \overline{N}(s) \\ \overline{B}(s) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ \cosh\theta & 0 & \sinh\theta \\ -\sinh\theta & 0 & -\cosh\theta \end{pmatrix} \begin{pmatrix} T(s) \\ N(s) \\ B(s) \end{pmatrix}$$
(4)

ii) If W is a timelike vector, then we have

$ \begin{pmatrix} \overline{T}(s) \\ \overline{N}(s) \\ \overline{B}(s) \end{pmatrix} = \begin{pmatrix} \end{array} $	0	1	0	(T(s))
$\left \overline{N}(s) \right =$	$\sinh \theta$	0	$\cosh \theta$	N(s)
$\left(\overline{B}(s)\right)$	$-\cosh\theta$	0	$-\sinh\theta$	$\left(B(s) \right)$

2. SURFACE FAMILY WITH A COMMON NATURAL GEODESIC LIFT OF A TIMELIKE CURVE IN MINKOWSKI 3-SPACE

Suppose we are given a 3-dimensional timelike curve $\alpha(s)$, $L_1 \le s \le L_2$, in which *s* is the arc length and $\|\alpha''(s)\| \ne 0$, $L_1 \le s \le L_2$. Let $\overline{\alpha}(s)$, $L_1 \le s \le L_2$, be the natural lift of the given curve $\alpha(s)$. Now, $\overline{\alpha}$ is a spacelike curve with timelike or spacelike binormal.

Surface family that interpolates $\overline{\alpha}(s)$ as a common curve is given in the parametric form as

$$P(s,t) = \overline{\alpha}(s) + u(s,t)\overline{T}(s) + v(s,t)\overline{N}(s) + w(s,t)\overline{B}(s)$$
(6)

where u(s,t), v(s,t) and w(s,t) are C^1 functions, called *marching-scale functions*, and $\{\overline{T}(s), \overline{N}(s), \overline{B}(s)\}$ is the Frenet frame of the curve $\overline{\alpha}$.

Remark 4. Observe that choosing different marching-scale functions yields different surfaces possessing $\bar{\alpha}(s)$ as a common curve.

Our goal is to find the necessary and sufficient conditions for which the curve $\overline{\alpha}(s)$ is isoparametric and geodesic on the surface P(s,t). Firstly, as $\overline{\alpha}(s)$ is an isoparametric curve on the surface P(s,t), there exists a parameter $t_0 \in [T_1, T_2]$ such that

$$u(s,t_0) = v(s,t_0) = w(s,t_0) \equiv 0, \ L_1 \le s \le L_2, \ T_1 \le t_0 \le T_2$$
(7)

Secondly the curve $\overline{\alpha}$ is a geodesic on the surface P(s,t) if and only if along the curve the normal vector field $n(s,t_0)$ of the surface is parallel to the principal normal vector field \overline{N} of the curve $\overline{\alpha}$. The normal vector of P(s,t) can be written as

$$n(s,t) = \frac{\partial P(s,t)}{\partial s} \times \frac{\partial P(s,t)}{\partial t}.$$

Along the curve $\overline{\alpha}$, one can obtain the normal vector $n(s,t_0)$ using Eqns. (6-7) with an appropriate equation in Eqns. (2-5). It has one of the following forms: i)if $\overline{\alpha}$ is a spacelike curve with timelikebinormal and Darboux vector *W* is spacelike or timelike, then

(5)

$$n(s,t_0) = \kappa \left[\frac{\partial w}{\partial t}(s,t_0) \overline{N}(s) + \frac{\partial v}{\partial t}(s,t_0) \overline{B}(s) \right], \tag{8}$$

ii) if $\overline{\alpha}$ is a spacelike curve with spacelike binormal and Darboux vector W is spacelike, then

$$n(s,t_0) = -\kappa \left[\frac{\partial w}{\partial t}(s,t_0) \bar{N}(s) + \frac{\partial v}{\partial t}(s,t_0) \bar{B}(s) \right], \tag{9}$$

iii) if $\overline{\alpha}$ is a spacelike curve with spacelike binormal and Darboux vector W timelike, then

$$n(s,t_0) = \kappa \left[\frac{\partial w}{\partial t}(s,t_0) \overline{N}(s) - \frac{\partial v}{\partial t}(s,t_0) \overline{B}(s) \right], \tag{10}$$

where κ is the curvature of the curve α .

Since $\kappa(s) \neq 0$, $L_1 \leq s \leq L_2$, the curve $\overline{\alpha}$ is a geodesic on the surface P(s,t) if and only if $\partial w \leftarrow \infty = \partial v \leftarrow \infty$

$$\frac{\partial W}{\partial t}(s,t_0) \neq 0, \ \frac{\partial V}{\partial t}(s,t_0) = 0.$$

So, we can present:

Theorem 5: Let $\alpha(s)$, $L_1 \le s \le L_2$, be a unit speed timelike curve with nonvanishing curvature and $\overline{\alpha}(s)$, $L_1 \le s \le L_2$, be its natural lift. $\overline{\alpha}$ is a geodesic on the surface (6) if and only if

$$\begin{cases} u(s,t_0) = v(s,t_0) = w(s,t_0) = \frac{\partial v}{\partial t}(s,t_0) \equiv 0, \\ \frac{\partial w}{\partial t}(s,t_0) \neq 0, \end{cases}$$
(11)

where $L_1 \leq s \leq L_2$, $T_1 \leq t$, $t_0 \leq T_2$ (t_0 fixed).

Corollary 6: Let $\alpha(s)$, $L_1 \le s \le L_2$, be a unit speed timelike curve with nonvanishing curvature and $\overline{\alpha}(s)$, $L_1 \le s \le L_2$, be its natural lift. If

$$\begin{cases} u(s,t) = w(s,t) = t - t_0, \ v(s,t) \equiv 0 \\ or \\ u(s,t) = v(s,t) \equiv 0, \ w(s,t) = t - t_0, \end{cases}$$
(12)

where $L_1 \le s \le L_2$, $T_1 \le t$, $t_0 \le T_2$ (t_0 fixed) then (6) is a ruled surface possessing $\overline{\alpha}$ as a geodesic.

Proof: By taking marching scale functions as $u(s,t) = w(s,t) = t - t_0$, $v(s,t) \equiv 0$ or $u(s,t) = v(s,t) \equiv 0$, $w(s,t) = t - t_0$, the surface (6) takes the form

$$P(s,t) = \overline{\alpha}(s) + (t - t_0) \left[\overline{T}(s) + \overline{B}(s)\right]$$

or
$$P(s,t) = \overline{\alpha}(s) + (t - t_0) \overline{B}(s),$$

which is a ruled surface satisfying Eqn. (11).

3. EXAMPLES

Example 1

Let $\alpha(s) = (\sinh s, 0, \cosh s)$ be a timelike curve. It is easy to show that

$$T(s) = (\cosh s, 0, \sinh s),$$

$$N(s) = (\sinh s, 0, \cosh s),$$

$$B(s) = (0, -1, 0).$$

The natural lift of the curve α is $\overline{\alpha}(s) = (\cosh s, 0, \sinh s)$ and its Frenet vectors

$$\overline{T}(s) = (\sinh s, 0, \cosh s),$$

$$\overline{N}(s) = (\cosh s, 0, \sinh s),$$

$$\overline{B}(s) = (0, 1, 0).$$

Choosing marching scale functions as u(s,t)=t, v(s,t)=0, $w(s,t)=\sinh t$ Eqn. (11) is satisfied and we obtain the surface

 $P_1(s,t) = (\cosh s + t \sinh s, \sinh t, t \cosh s + \sinh s).$

 $-1 \le s \le 1, -1 \le t \le 0$, possessing $\overline{\alpha}$ as a common natural geodesic lift (Fig. 1).

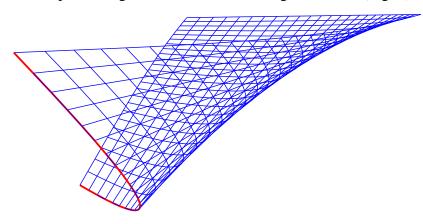
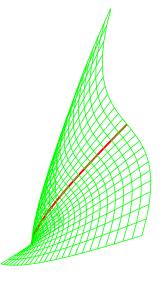
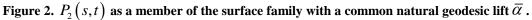


Figure 1. $P_1(s,t)$ as a member of the surface family with a common natural geodesic lift $\overline{\alpha}$.

For the same curve, if we choose $u(s,t) \equiv 0$, $v(s,t) = t - \sinh t$, $w(s,t) = (\sinh s) \sinh t$ we get the surface

 $P_2(s,t) = (\cosh s + (t - \sinh t) \cosh s, (\sinh s) \sinh t, (t - \sinh t) \sinh s + \sinh s),$ $0 < s \le 1, -1 \le t \le 1$, satisfying Eqn. (11) and accepting $\overline{\alpha}$ as a common natural geodesic lift (Fig. 2).





Example 2

Given the arclength timelike curve $\alpha(s) = (\frac{5}{3}s, \frac{4}{9}\cos 3s, \frac{4}{9}\sin 3s)$ its Frenet apparatus are

$$T(s) = \left(\frac{5}{3}, -\frac{4}{3}\sin 3s, \frac{4}{3}\cos 3s\right),$$

$$N(s) = (0, -\cos 3s, -\sin 3s),$$

$$B(s) = \left(-\frac{4}{3}, \frac{5}{3}\sin 3s, -\frac{5}{3}\cos 3s\right).$$

The natural lift of the curve α is $\bar{\alpha}(s) = (\frac{5}{3}, -\frac{4}{3}\sin 3s, \frac{4}{3}\cos 3s)$ and its Frenet vectors

$$\overline{T}(s) = (0, -\cos 3s, -\sin 3s),$$

$$\overline{N}(s) = (0, \sin 3s, -\cos 3s),$$

$$\overline{B}(s) = (-1, 0, 0).$$

If we let marching scale functions as u(s,t) = v(s,t) = 0, w(s,t) = t, we get the ruled surface

$$P_{3}(s,t) = \left(\frac{5}{3} - t, -\frac{4}{3}\sin(3s), \frac{4}{3}\cos(3s)\right),$$

 $-1.1 \le s \le 1, -1 \le t \le 1$, satisfying Eqn. (12) and passing through $\overline{\alpha}$ as a common natural geodesic lift (Fig. 3).

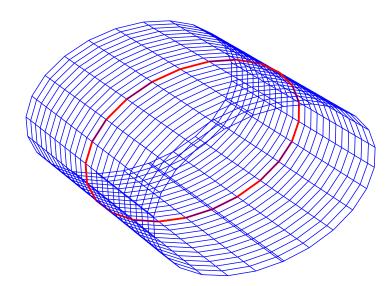


Figure 3. Ruled surface $P_3(s,t)$ as a member of the surface family with a common natural geodesic lift $\overline{\alpha}$.

For the same curve, if we choose $u(s,t) \equiv 0$, $v(s,t) = t^2 e^s$, $w(s,t) = t \ln s$ we obtain the surface

$$P_4(s,t) = \left(\frac{5}{3} - t \ln s, -\frac{4}{3}\sin(3s) + t^2 e^s \sin(3s), \frac{4}{3}\cos(3s) - t^2 e^s \cos(3s)\right),$$

 $1 < s \le 2$, $0 \le t \le 1$, satisfying Eqn. (11) and possessing $\overline{\alpha}$ as a common natural geodesic lift (Fig. 4).

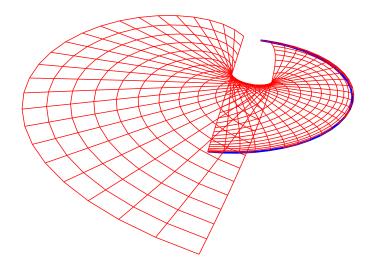


Figure 4. $P_4(s,t)$ as a member of the surface family with a common natural geodesic lift \overline{lpha} .

Acknowledgements: The second author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports during his doctorate studies.

REFERENCES

- [1] O'Neill, B., *Semi-Riemannian Geometry with Applications to Relativity*, Academic Press, New York, 1983.
- [2] Ratcliffe, J.G., Foundations of Hyperbolic Manifold, Springer-Verlag, New York, 1994.
- [3] Önder M., Uğurlu H.H., Shams Engineering Journal, 4, 502, 2013.
- [4] Walrave J., *Curves and surfaces in Minkowski space*, PhD. Thesis, K. U. Leuven Faculteit Der Wetenschappen, 1995.
- [5] Ergün, E., Çalışkan, M, Int. J. Contem. Math. Sci., 6, 39, 1929, 2011.