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Abstract. In order to estimate model parameters in multiple regression models, 

resampling methods of bootstrap and jackknife are used. Resampling methods are used as an 

alternative readjustment method to the least squares method (OLS) especially when 

assumptions belonging to error term in regression analysis are not met.  Data used in the 

study are taken from 25 advertisements in Sahibinden.com website and the price of beetle car 

brand is accepted as dependent variable for multiple linear regression models. It is aimed 

that price variable taken is tried to be explained with the help of variables of fuel, case type, 

salesman, sunroof, wind shield, upholstery, age and engine size. When we examined the 

variables, it is seen that categorical variables are in question and dummy variable must be 

used. Firstly, model parameters of this obtained data are estimated using OLS and 

significances of parameters are tested, then, model parameters, significances of estimated 

parameters, coefficient of determination, and standard error of the model and % 90 

confidence intervals are estimated using one of the resampling methods, bootstrap and 

jackknife method and results belonging to these three methods are compared. Also, 

generalization condition, which is to the population, of parameter estimation results 

belonging to explanatory variables used in this study are reviewed with the help of jackknife 

resampling method ve It has been seen that the salesman and upholstery independent 

variables have a considerable effect at a significance level of .10 on the dependent variable of 

price dependence of decision making (p < .10) and Jackknife have confirmed these 

generalization. 

Keywords: Bootstrap method, jackknife method, multiple linear regressions, 

generalization. 

 

 

1. INTRODUCTION  

 

 

Regression analysis is one of the most used methods in determinating functional 

relation among variables and is a statistical method which provides parameter estimation by 

determinating relation among variables [1]. Variables in the regression model consist of one 

dependent and one or more explanatory variables. Models with more than one explanatory 

variables are called multiple linear regression models. OLS is used in solution of this model.  

There are various studies belonging to bootstrap and jackknife method which are one 

of the resampling methods used in the study. Some of these, bootstrap method were 
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introduced first time by Efron [2] in regression. Later, performance of bootstrap method in 

regression is examined in most studies. Freedman's study [3] is a culmination of Bickel and 

Freedman [4] study and it explored asymptotic theory of bootstrap regression. Stine [5], in his 

study, showed that to form the distribution of residual values in linear regression model, 

experimental distribution is estimated through giving     probability to residual values found. 

Shao and Tu [6] investigated that bootstrap and jackknife estimators in regression analysis are 

not affected by deviations which are one of the assumptions. Fox [7], in his study, assumed 

that because bootstrap method is added to the regression model estimation obtained by OLS 

through sampling repeating samples from residual terms, residual terms are normally 

distributed and by forming the experimental distribution of values sample, pointed at the need 

to determine algorithm of bootstrap applied. In most studies, it is showed that bootstrap 

approach is valid for OLS parameter estimation distribution. Freedman's study [3] is 

improved by Wu [8]. Freedman and Peter [9] presented the usage of bootstrap regression 

method to meet the energy demand in industry. Also, for bootstrap method, Saurbrei and 

Schumacher [10]; Grist et al. [11]; Chen and George [12]; Desli and Ray [13]; Hardle and 

Marron [14]; Wu [8] can be explored. Mooney and Duval [15] explained stages of the process 

and noted that to form sampling distribution, bootstrap method forms repetitions in great 

number instead of assumptions and analytic formulas and is a nonparametric method 

developed to remove the inefficacy of sampling method. Sahinler and Topuz [16] examined 

the algorithm of bootstrap and jackknife resampling to estimate regression parameters. Liu 

[17], in his study, introduced bootstrap procedures under some independent and not 

identically distributed models. Rasheed and Algamal [18] studied on linear regression model 

using jackknife and bootstrap methods. Zaman and Alakuş [19] investigated bootstrap and 

jackknife methods, which are used as a correction term when assumptions of the error in 

simple linear regressions are not met in detail. Also, various studies are made on 

generalizability and repeatability of jackknife method [20-22]. Akpanta and Okorie [23], in 

their study, examined the significance of correlation coefficient using jackknife estimations.  

 

 

2. MATERIALS AND METHODS 
 

 

Multiple linear regression model which is going to be used is defined using following 

matrix notation; 

 

                                   (2.1) 

 

In this equation 

  is a     sized column vector of dependent variable  . 

  is a     sized matrix of known constants (explanatory variables). 

  is a     sized column vector of unknown regression coefficents. 

  is a     sized column vector of random errors.  
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           , which vector   is independent and identically distributed, is assumed. 

Here    is a     sized unitary matrix and a constant where      [24]. Regression model 

parameter estimations here are obtained through OLS with equation 

 

                        (2.2) 

 

Covariance matrix of regression coefficients estimated through OLS are given with 

 

                   
                 (2.3) 

 

Variances of estimated regression coefficients are base diagonal units of equation (2.3) 

and values outside of base diagonal are covariances.  

 

 

2.1. BOOTSTRAP METHOD 

 

 

The term "bootstrapping" literally means self-starting without the aid of others, and 

derives from the idiom "pull oneself up by one's own bootstraps". For the first time, it is 

suggested as an alternative to jackknife method by Bradley Efron [2] while being indicated as 

easier and safer than jackknife method. It is improved by Efron and Tibshiranni [25]. It is 

resampling method from original data series [26]. Underlying train of thought of the method 

is based on forming new data series through replacing and resampling any sized observations 

in current data series depending on luck. Thus, it is possible to get information as much as 

possible from the current data set. In other words, firstly, a bootstrap sample is formed 

through placement method about the size of the data set on hand. Then, a large number of 

bootstrap sample can be formed in this way [13, 26]. Fundamental aim of bootstrap method is 

to get the sampling distribution of prediction value and to evaluate the uncertainty of 

unknown population parameter value based on this distribution [27]. Number of bootstrap 

sample, which will be formed since replacing method is valid, cannot be more than   . 

Let us come to the point of usage of bootstrap method in linear regression. There are 

two approach in bootstrap regression usage. First of these, which is used in the study, is the 

expression that when regression coefficients are fixed, it uses the resampling of bootstrap 

error term. 

1. Regression model on original data set is estimated and residuals (    are calculated. 

2.   sized   bootstrap subsamples are formed by given 
 

 
 probability to      values 

obtained and bootstrap error term mean is calculated as follows: 

 

    
  

     
 
   

 
        (2.4) 

 

Here,     
 is  th bootstrap error estimator and       is  th error estimator beloning to  th bootstrap 

sample [5, 6, 8, 28]. 

3. Through putting calculated     
  values into the place of   s in the model formed, 

 

         
          

         (2.5) 

 

bootstrap      
  values are calculated. 
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4. Based on      
  and  s, using least squares method, bootstrap estimator of   is 

calculated as follows [17]: 

 

                                  (2.6) 

 

Variance of bootstrap method is calculated as follows:  

 

          
 

   
                         

 
 
                          (2.7) 

 

where, it is       
 

 
      

   . 

Confidence interval belonging to Bootstrap method based on normal approach is 

calculated as follows: 

 

             
 
           

                   
 
           

                       (2.8) 

  

 

2.2. JACKKNIFE METHOD 

 

 

In recent years, when it is not viable to evaluate data with parametric methods, 

resampling methods are started to be used.  One of these methods is Jackknife method.  

Jackknife method is developed with the intention of minimizing the sampling error in concern 

with getting narrow confidence intervals in estimating population parameters. This method is 

also called Pocket-knife Method. Pocket-knife is a hand tool which is to use on various 

problems. This method is also, like a pocket-knife, a method which is usable to carry out 

various problems. In this respect, name similarity is really fitting. Also, one of the works 

which can be done by pocket-knife is whittling. In jackknife method, there is also a similar 

process to whittling [22]. Jackknife is the first of computer-based methods for estimating bias 

and standard error. Jackknife resampling method was used with the aim of removing 

statistical biases in by Maurice Quenouille [29]. Later, it was extended to form hypothesis 

tests and confidence intervals in  by John Tukey and is called as "Jackknife" [30]. 

In statistics, the jackknife is a resampling technique especially useful for variance and 

bias estimation. The jackknife predates other common resampling methods such as the 

bootstrap. The jackknife estimator of an estimator is found by systematically leaving out each 

observation from a data set and calculating the estimate and then finding the average of these 

calculations. Given a sample of size    the jackknife estimate is found by aggregating the 

estimates of each     estimate in the sample. 

Let                     be an estimator defined for samples               
   

pseudo-value of       is  

 

                                                 (2.9) 

 

In (1),      means the sample             with the     value    deleted from the 

sample, so that      is a sample of size      . Note  

 

                                                (2.10) 
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So that,          can be viewed as a bias-corrected version of        determined by 

the trend in the estimators       from            to      . 

The basic jackknife recipe is to treat the pseudo values        as if they were 

independent random variables with mean  . One can then obtain confidence intervals and 

carry out statistical test using the Central Limit Theorem. Specially, let 

 

          
 

   
         

 
             (2.11) 

 

In this equation,       
 

 
       

 
    and jackknife estimation of standard error is 

given as: 

        
 
                 

   

 
 

   
 
 

  

  
                                         (2.12) 

 

 and Confidence interval belonging to jackknife method is the following statement: 

 

                
 
                          

 
                                (2.13)      

 

Also, generalizability states of explanatory variables to population can be explored 

with jackknife method. There are various studies on this in literature [20-22]. 

The parameters of regression methods using jackknife method are found as follow: 

1. Firstly,        sized   different subsamples are formed by removing the observations 

from the data one by one. 

2. Regression coefficients belonging to regression methods in interest are estimated for 

each formed subsample. This regression coefficients are called deleted slope 

coefficients and is indicated by                                

3. Lastly, in order to obtain Jackknife estimator of intercept parameter value, mean of 

values                                            is estimated as estimate         

as below: 

 

        
                                            
 
   

   
                      (2.14) 

 

4. Mean value of these coefficients that obtained for each subsample are Jackknife 

estimators and expressed as below,  

 

   
  
 

          
 
   

 
                    ;       

  
 

        
 
   

 
            (2.15) 

 

 

3. REAL DATA APPLICATION 

 

 

Data used in the study are compiled from 25 advertisings in Sahibinden.com website 

[31]. Independent variables being used and their levels are given in Table 1. When we 

examined the variables, it is seen that categorical variables are in question and dummy 

variable must be used. While dummy variable is being used, one of the levels of categorical 

variable is kept outside of the model and new variables amounting level count minus one is 

defined [32].  
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Table 1. Some independent variables and their levels. 

Variable Name Code Levels 

Fuel Fuel Gasoline*, LPG 

Case Type Type Cabriolet
*
, Sedan 

Seller Seller Sahibinden
*
, Gallery 

Sunroof Sun Existent
*
, Nonexistent 

Front window Gl Camber
*
, Flat 

Upholstery Uph Fabric
*
, Leather 

Age              Quantitive Variable 

Engine Size                                                   1300*, 1600 

*
 Variable levels in question are out of the model to check on. 

 

It is aimed that Turkey market price value of Beetle car brand is tried to be explained 

with the help of variables of fuel, case type, salesman, sunroof, wind shield, upholstery, age 

and engine size. Since fuel, case type, seller, sunroof, wind shield, upholstery and engine size 

are explanatory variables, their states in multiple linear regression model are explored using 

dummy variable.   

Thus, regression model aimed to be formed is defined as: 

  

                                                          (3.1) 

 

 Data set belonging to 25 observation is given in Table 2. 

 
Table 2. Data Set (n=25, p=8).  

Item Number Price Fuel Case Type Seller Sunroof Wind Shield Upholstery Age Engine Size 

1 8.75 0 1 0 0 0 0 42 1 

2 27.5 0 0 0 1 0 0 42 1 

3 26 1 1 0 0 0 1 43 1 

4 23.25 1 1 0 0 0 1 42 1 

5 41 0 1 0 1 1 1 55 0 

6 35 0 1 0 0 1 1 52 0 

7 35 0 1 1 0 1 1 53 0 

8 35 1 1 0 1 1 1 51 0 

9 30.5 0 1 1 0 1 1 54 0 

10 28 0 1 1 0 1 0 53 0 

11 14.25 1 1 0 0 0 1 42 1 

12 14 0 1 0 0 0 0 42 1 

13 13 0 1 0 1 0 0 42 1 

14 11.45 0 1 0 0 0 1 42 1 

15 37.5 0 0 0 1 0 1 43 1 

16 25.5 0 1 0 0 0 0 42 1 

17 25 0 1 0 0 1 1 48 1 

18 40 0 1 1 0 0 1 43 1 

19 28 0 1 0 0 0 1 42 1 

20 17.5 0 1 1 0 0 0 43 1 

21 14 0 1 0 0 0 1 39 1 

22 19.99 1 1 0 0 0 1 43 1 

23 16 0 1 0 0 1 1 44 1 

24 46.5 0 1 1 1 0 1 43 1 

25 19 0 1 0 0 1 0 51 0 
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Multiple linear regression analysis belonging to the data is resolved using R 

programming language. First, states of residual terms obtained using estimation model are 

interpreted in Fig. 1. Then, multiple linear regression results of data set is shown in Table 3 

and obtained results are noted. 

 
Figure 1. Graphs of residual term obtained through the use of estimation model. 

 

When graphs of residual term in Figure 1 are looked through, it is obvious that there 

are deviated values in data set and assumptions of error term are not met. In this regard, 

especially when assumptions belonging to error term in regression analysis are not met, 

resampling methods are used as a correction method.  Thus, it is expected that regression 

model is better estimated through the use of resampling methods. 
 

Table 3. Multiple Linear Regression Results.  

 

Variable 

Non-standardized 

coefficients 

Standardized 

coefficients t-test 
Significance 

Probability 
B Std. Error Beta 

Constant -56.912 61.082  -0.932 0.365 

   -2.083 4.123 -0.082 -0.505 0.620 

   -5.598 6.306 -0.149 -0.888 0.388 

   7.281 3.924 0.305 1.855 0.082 

   8.224 3.920 0.344 2.098 0.052 

   -9.102 7.736 -0.428 -1.176 0.257 

   9.708 3.322 0.444 2.922 0.010 

   1.734 1.259 0.816 1.378 0.187 

   2.615 9.786 0.115 0.267 0.793 

    
       ;          

Significance test of the model, F=4.89; significance probability is 0.003.   

 

Results belonging to explanatory variables, which are important for multiple linear 

regression model, are given in Table 3. When Table 3 is looked through, it is observed that 
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explanatory variables   ,    and    are statistically significant.         . Our multiple 

linear regression model set up through these variables are also found statistically significant 

              .  For model, it is calculated as     
       . That is to say, explanation 

rate of explanatory variables (   ,   ,    ), which are found significant in the model, on 

model variance is calculated as 0.571.  

Also, generalizability states of variables found significant in the model to the universe 

can be explored with jackknife method. Variables found significant in this sense, coefficient 

of determination of the model and generalizability states of standard error of the model to the 

universe are tested using jackknife method. In this regard, in Table 4, standardized beta 

coefficients, which are obtained through regression analysis by leaving out one each 

observation respectively, are seen. 
 

Table 4. Beta coefficients obtained through Jackknife Method. 

 

                                             
      

None excluded -0.082 -0.149 0.305 0.344 -0.428 0.444 0.816 0.115 0.571 6.824 

1. excluded -0.098 -0.145 0.300 0.352 -0.48 0.423 0.889 0.136 0.522 6.945 

2. excluded -0.085 -0.092 0.301 0.320 -0.433 0.432 0.818 0.116 0.561 7.042 

3. excluded -0.107 -0.146 0.310 0.356 -0.386 0.439 0.737 0.070 0.572 6.962 

4. excluded -0.098 -0.146 0.302 0.350 -0.42 0.438 0.810 0.114 0.566 7.005 

5. excluded -0.096 -0.144 0.301 0.350 -0.468 0.468 0.851 0.139 0.514 7.042 

6. excluded -0.032 -0.142 0.368 0.391 -0.372 0.402 0.814 0.235 0.583 6.742 

7. excluded -0.085 -0.16 0.307 0.338 -0.416 0.458 0.773 0.085 0.548 7.014 

8. excluded -0.128 -0.169 0.295 0.269 -0.517 0.453 0.974 0.214 0.552 6.985 

9. excluded -0.095 -0.18 0.332 0.296 -0.477 0.476 0.889 0.115 0.617 6.551 

10. excluded -0.084 -0.147 0.280 0.344 -0.416 0.429 0.774 0.110 0.560 7.047 

11. excluded -0.019 -0.16 0.312 0.332 -0.441 0.454 0.821 0.117 0.571 6.801 

12. excluded -0.081 -0.155 0.316 0.353 -0.427 0.441 0.820 0.114 0.539 7.042 

13. excluded -0.110 -0.017 0.284 0.491 -0.435 0.358 0.812 0.162 0.605 6.481 

14. excluded -0.183 -0.125 0.245 0.318 -0.589 0.541 0.875 0.060 0.625 6.262 

15. excluded -0.088 -0.127 0.310 0.33 -0.446 0.462 0.847 0.120 0.534 7.042 

16. excluded -0.049 -0.184 0.360 0.372 -0.334 0.497 0.711 0.073 0.674 6.071 

17. excluded -0.080 -0.15 0.312 0.346 -0.440 0.441 0.721 0.001 0.563 7.034 

18. excluded -0.058 -0.158 0.216 0.375 -0.396 0.410 0.856 0.108 0.580 6.589 

19. excluded -0.036 -0.162 0.335 0.360 -0.355 0.402 0.792 0.141 0.581 6.878 

20. excluded -0.067 -0.147 0.339 0.341 -0.425 0.388 0.843 0.166 0.568 6.905 

21. excluded -0.123 -0.144 0.312 0.347 -0.37 0.497 0.510 -0.093 0.552 6.940 

22. excluded -0.054 -0.151 0.300 0.335 -0.449 0.442 0.863 0.143 0.561 7.014 

23. excluded -0.081 -0.153 0.318 0.352 -0.317 0.449 0.737 0.127 0.547 7.034 

24. excluded -0.060 -0.275 0.183 0.178 -0.498 0.431 1.023 0.107 0.530 6.602 

25. excluded -0.081 -0.147 0.317 0.355 -0.434 0.445 0.843 0.159 0.558 7.015 
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Pseudo-values belonging to explanatory variables,      ,   ,      ,   ,    and   , 

are obtained as seen in Table 5 with the help of equation (2.9) through the usage of beta 

estimation values which are standardized in Table 4. 
 

Table 5. Pseudo Values. 

Item Number    
 
    

 
    

 
    

 
    

 
    

 
    

 
    

 
     

None excluded -0.082 -0.149 0.305 0.344 -0.428 0.444 0.816 0.115 6.824 

1. excluded 0.302 -0.245 0.425 0.152 0.820 0.948 -0.936 -0.389 3.920 

2. excluded -0.010 -1.517 0.401 0.920 -0.308 0.732 0.768 0.091 1.592 

3. excluded 0.518 -0.221 0.185 0.056 -1.436 0.564 2.712 1.195 3.512 

4. excluded 0.302 -0.221 0.377 0.200 -0.620 0.588 0.960 0.139 2.480 

5. excluded 0.254 -0.269 0.401 0.200 0.532 -0.132 -0.024 -0.461 1.592 

6. excluded -1.282 -0.317 -1.207 -0.784 -1.772 1.452 0.864 -2.765 8.792 

7. excluded -0.010 0.115 0.257 0.488 -0.716 0.108 1.848 0.835 2.264 

8. excluded 1.022 0.331 0.545 2.144 1.708 0.228 -2.976 -2.261 2.960 

9. excluded 0.230 0.595 -0.343 1.496 0.748 -0.324 -0.936 0.115 13.376 

10. excluded -0.034 -0.197 0.905 0.344 -0.716 0.804 1.824 0.235 1.472 

11. excluded -1.594 0.115 0.137 0.632 -0.116 0.204 0.696 0.067 7.376 

12. excluded -0.106 -0.005 0.041 0.128 -0.452 0.516 0.720 0.139 1.592 

13. excluded 0.590 -3.317 0.809 -3.184 -0.260 2.508 0.912 -1.013 15.056 

14. excluded 2.342 -0.725 1.745 0.968 3.436 -1.884 -0.600 1.435 20.312 

15. excluded 0.062 -0.677 0.185 0.680 0.004 0.012 0.072 -0.005 1.592 

16. excluded -0.874 0.691 -1.015 -0.328 -2.684 -0.828 3.336 1.123 24.896 

17. excluded -0.130 -0.125 0.137 0.296 -0.140 0.516 3.096 2.851 1.784 

18. excluded -0.658 0.067 2.441 -0.400 -1.196 1.26 -0.144 0.283 12.464 

19. excluded -1.186 0.163 -0.415 -0.040 -2.180 1.452 1.392 -0.509 5.528 

20. excluded -0.442 -0.197 -0.511 0.416 -0.500 1.788 0.168 -1.109 4.880 

21. excluded 0.902 -0.269 0.137 0.272 -1.820 -0.828 8.160 5.107 4.040 

22. excluded -0.754 -0.101 0.425 0.560 0.076 0.492 -0.312 -0.557 2.264 

23. excluded -0.106 -0.053 -0.007 0.152 -3.092 0.324 2.712 -0.173 1.784 

24. excluded -0.610 2.875 3.233 4.328 1.252 0.756 -4.152 0.307 12.152 

25. excluded -0.106 -0.197 0.017 0.08 -0.284 0.42 0.168 -0.941 2.240 

Jackk Pseudo 

Mean 
-0.055 -0.148 0.372 0.391 -0.388 0.467 0.813 0.149 6.396 

Jackk Pseudo 

Standard Error 
0.164 0.198 0.190 0.246 0.281 0.179 0.459 0.306 1.289 

 

Average Jackknife parameter values related to explanatory coefficient of the model, 

standard error values related to pseudo-values of Jackknife "t" values related to parameter 

distribution of Jackknife and finally confidence interval of parameter values are summarized 

in Table 6. 
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Table 6. %90 Confidence Intervals (CI) of parameter estimation values calculated through Jackknife 

Method. 

    
 
    

 
    

 
    

 
    

 
    

 
    

 
    

 
     

  
     

Original 

 Coefficient 
-0.082 -0.149 0.305 0.344 -0.428 0.444 0.816 0.115 0.571 6.824 

Pseudo Jackk. Mean  -0.055 -0.148 0.372 0.391 -0.388 0.467 0.813 0.149 0.659 6.396 

Pseudo Standard Error 

Mean 
0.164 0.198 0.190 0.246 0.281 0.179 0.459 0.306 0.166 1.289 

Lower Bound %90 CI -0.341 -0.493 0.040 -0.038 -0.878 0.154 0.011 -0.385 0.369 4.145 

Upper Bound %90 CI 0.231 0.197 0.703 0.820 0.102 0.779 1.614 0.683 0.948 8.646 

t calculation -0.335 -0.747 1.957 1.589 -1.380 2.608 1.771 0.486 3.969 4.961 

 

Standard error belonging to 25 pseudo values are calculated with equation (2.12). 

Mean of standard errors obtained later is 6.396 (mean(serror)); standard error of obtained 

pseudo standard error is 1.289.  

In Table 6, it is seen that parameter estimation value of variable    obtained through 

jackknife method is 0.190, it confirms the first calculated original value, 0.305           

             and estimation value of jackknife is in %90 confidence interval. In this 

regard, it is observed that variable   , which is found significant for the model, is not 

applicable only in this sample but also at the same time is generalizable to the population. It 

was observed that explanatory variable    is not significant in 0.10 significancy level (see 

Table 3). This situation is tested with jackknife method and also in this method, it is seen that 

variable    is not significant in 0.10 significancy level (calculated t value=-0.335, critical t 

value=1.746). Thus, if effect of explanatory variable    is considered even if a little, this 

effect can be tought as unique to the sample. However, variable    was observed as non 

significant in 0.10 significance level (see Table 3). This is tested with Jackknife method and 

in case of this method, explanatory variable    is found significant in 0.10 significancy level 

(calculated t value 1.771, critical t value=1.746). In the same regard, evaluations to other 

explanatory variables can be made.  

And finally, generalizability state of explanatory coefficient of the model    and 

standart error of the model    is tested with Jackknife and according to Table 6, because 

calculated t value (3.969) related to    and calculated t value related to    are bigger than 

critical t value (1.746), coefficient of determination of the model and standart error of the 

model is not unique to the sample and has the ability to generalize to the population. In other 

words, it can be said that in the studies that will be made in different times, obtained value 

will be same or close. Likewise, it can be thought that explanatory variables, which are 

significant on price response variable on deciding and are able to generalize to the population, 

can be determined as significant in other studies too. 

Now, let us carry out our processes taking account of calculation algorithm of 

bootstrap method given in chapter (2.1). Obtained results are as follows. 
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Table 7. Residuals obtained from regression model. 
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1 8.75 0 1 0 0 0 0 42 1 -4.20687 -0.17 

2 27.5 0 0 0 1 0 0 42 1 0.72097 0.03 

3 26 1 1 0 0 0 1 43 1 3.68465 0.15 

4 23.25 1 1 0 0 0 1 42 1 2.66898 0.11 

5 41 0 1 0 1 1 1 55 0 -0.71804 -0.03 

6 35 0 1 0 0 1 1 52 0 6.70907 0.27 

7 35 0 1 1 0 1 1 53 0 -2.30602 -0.09 

8 35 1 1 0 1 1 1 51 0 2.30273 0.09 

9 30.5 0 1 1 0 1 1 54 0 -8.54035 -0.34 

10 28 0 1 1 0 1 0 53 0 0.40159 0.02 

11 14.25 1 1 0 0 0 1 42 1 -6.33102 -0.25 

12 14 0 1 0 0 0 0 42 1 1.04313 0.04 

13 13 0 1 0 1 0 0 42 1 -8.18100 -0.33 

14 11.45 0 1 0 0 0 1 42 1 -11.2144 -0.45 

15 37.5 0 0 0 1 0 1 43 1 -0.72097 -0.03 

16 25.5 0 1 0 0 0 0 42 1 12.54313 0.50 

17 25 0 1 0 0 1 1 48 1 1.03134 0.04 

18 40 0 1 1 0 0 1 43 1 8.32043 0.33 

19 28 0 1 0 0 0 1 42 1 5.33552 0.21 

20 17.5 0 1 1 0 0 0 43 1 -4.47196 -0.18 

21 14 0 1 0 0 0 1 39 1 -3.46149 -0.14 

22 19.99 1 1 0 0 0 1 43 1 -2.32535 -0.09 

23 16 0 1 0 0 1 1 44 1 -1.03134 -0.04 

24 46.5 0 1 1 1 0 1 43 1 6.59630 0.26 

25 19 0 1 0 0 1 0 51 0 2.15101 0.09 

 

If Table 7 is explored, firstly, regression residual values    are calculated with 

classical OLS. Then, each obtained    value is given      probability. One of the resampling 

methods, bootstrap method, is applied on obtained 25 
  

    values. In table 8, there are 25 

sized 1000 bootstrap sample of this value. 
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Table 8. Samples belonging to residuals and calculated estimation values. 

1.Bootst 

Samp. 

2.Bootst 

Samp. 

3.Bootst 

Samp. 
… 

1000.Bootst 

Samp. 
    
    

  

-0.09 0.09 -0.34 
 

0.26 0.00547 12.94847 

-0.33 0.03 0.33 
 

0.02 0.00089 26.76589 

0.04 -0.33 0.50 
 

-0.45 -0.00924 22.29276 

-0.09 0.03 0.03 
 

-0.03 -0.00691 20.56109 

0.21 0.50 0.15 
 

-0.09 0.00714 41.70714 

0.27 -0.04 0.02 
 

0.15 0.00306 28.27706 

0.02 0.26 0.09 
 

0.50 0.00061 37.28961 

0.21 0.03 -0.03 
 

0.04 0.00814 32.68914 

0.26 0.27 -0.25 
 

-0.18 -0.01261 39.01039 

0.09 -0.03 -0.03 
 

-0.18 0.00679 27.58779 

0.15 0.04 0.21 
 

-0.25 0.00666 20.57466 

0.09 -0.14 -0.17 
 

-0.34 0.00461 12.94761 

-0.33 -0.14 -0.14 
 

0.09 0.00256 21.16956 

0.09 -0.18 -0.34 
 

0.33 -0.00655 22.64445 

0.50 0.27 -0.33 
 

-0.14 0.00975 38.21675 

0.09 -0.25 -0.03 
 

-0.14 0.00361 12.94661 

0.04 0.33 -0.14 
 

0.02 0.00046 23.95346 

0.02 -0.45 0.26 
 

0.09 -0.00206 31.66394 

0.21 -0.09 -0.18 
 

-0.14 0.00232 22.65332 

0.27 -0.33 -0.25 
 

0.09 -0.00607 21.95193 

0.26 0.09 0.33 
 

-0.45 -0.00101 17.44799 

-0.09 0.03 -0.18 
 

0.09 -0.00551 22.29649 

-0.09 0.04 0.09 
 

0.15 -0.00116 17.01584 

0.03 0.02 -0.09 
 

-0.17 -0.0025 39.8875 

0.03 0.21 0.21 … -0.34 -0.01402 16.81798 

 

In table 8, there are 25 sized 1000 bootstrap sample of this value. Taking account of 

the bootstrap sample,      
 
 value and with the help of this value,    value is calculated.     

  

value is mean of column values in Table 8. In other words, it is mean of the first values in 

bootstrap example.  

Value     
          shows residual estimator and it is derived through dividing the 

first values in 1000 bootstrap sample with 1000.  In the same way      
           value is 

25. Bootstrap shows the residual estimator and it is derived through dividing sum of 25th 

values in 1000 bootstrap sample obtained with 1000. 

 

     
 : regression model derived from OLS is stated as +    

 . In other words, 
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Since OLS regression is applied to obtained      
  value and independent variables 

obtained values are bootstrap estimation based on resampling of error term. 

If we summarize the results found with bootstrap method in Table 9. 

 
Table 9. %90 Confidence Intervals (CI) of parameter estimation values calculated through Bootstrap 

Method. 

                         

BootMean -0.097 -0.176 0.360 0.408 -0.507 0.525 0.965 0.136 

Bootserror 0.004 0.006 0.004 0.004 0.008 0.003 0.001 0.100 

Lower Bound 

%90 CI 
-2.092 -5.610 7.271 8.222 -9.116 9.701 1.732 2.598 

Upper Bound 

%90 CI 
-2.077 -5.587 7.285 8.236 -9.088 9.713 1.736 2.633 

          

 

When Table 9 is explored, it is seen that all regression coefficients, which are 

estimated in multiple regression through bootstrap method, are significant for the model. 

Standard error of formed regression model is 0.0070 and is a very small value. And this 

shows the success of results obtained through bootstrap estimation. 

 

 

4. CONCLUSIONS 

 

 

In the study, comparison of bootstrap and jackknife method, which are resampling 

methods, and OLS, which is one of the classical methods, is made with the help of results 

derived from real life data. Usage of resampling methods, bootstrap and jackknife on multiple 

linear regression is introduced in detail. Coefficient of determination belonging to these 

methods, standard error of the model, statistical significance of derived model parameters and 

confidence intervals are calculated.  

In consequence of calculations made considering resampling method of Jackknife, 

standard error mean belonging to the model is calculated as 6.396. Explanatory variables   , 

   and    are found significant for the model. Also, generalizabilition states of explanatory 

variables used in the study are explored with jackknife method and are evaluated. Standard 

error estimation belonging to the model with resampling method of bootstrap is minimized to 

the 0.007. Also, in all explanatory variables in the study, it is found that beetle car brand is 

significant in the price of Turkey market. Number of samples used for bootstrap method is 

1000. When examined, even if finding result through working on 1000 sample is pretty hard, 

by means of progressing computer technology, this can be overcome. R program is used in 

bootstrap calculations. It is especially showed that researchers investigate the generalization 

of their findings with the Jackknife parameter estimator for experimental methods where, for 

due to some limitations, the number of samples is small. In this way, it is thought that the 

findings obtained can shed light on subsequent studies.  

As a result, in the data structure of this study, it is seen that bootstrap method, which is 

one of the resampling methods used as a correction method in situations that assumptions 
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belonging to error term are not met, shows results better than jackknife and OLS. In the 

application part, since the usage of bootstrap and jackknife methods in multiple linear 

regression is given in detail, it can be used as a reference for similar studies. 
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