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Abstract. The aim of this paper is to present: several new inequalities for power series 

with real coefficients by using a Young-type inequality for sequences of complex numbers, a 
matrix analogue for the Hilbert-Schmidt norm and a trace inequality for positive operators in 
Hilbert spaces, starting from a refinement of the classical Kittaneh-Manasrah inequality. 
Then several consequences as applications will be presented for special functions such as 
polylogarithm and for elementary functions. 
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1. INTRODUCTION  
 
 

The famous Young's inequality, also known as the weighted arithmetic mean-
geometric mean for two numbers, state that: 
 

	 1 , 
 
where a and b are distinct positive numbers and ν	ϵ (0,1), see [36]. This inequality is used in 
the classical Holder’s inequality, given below, which is a very important tool in real and 
complex analysis, 
  

	 ,			 1,			 1, 

 
which takes place for any positive numbers.  

These inequalities have many applications in various fields and there exist a lot of 
interesting generalizations of this well-known inequality and its reverse, see for example [1, 
9-11, 14, 18, 22, 23] and references therein. 

As in [1], we will consider , 	 1  and , .	 In [1] 
are presented new results which extend many generalizations of Young’s inequality given 
before.  

The below result from [1], is a generalization of the left-hand side of a refinement of 
the inequality of Young proved in 2010 and 2011 by Kittaneh and Manasrah in [22] and [23] 
and it is a very important tool in the demonstrations of our next theorems. 
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Theorem 1.  Let ,  and τ be real numbers with 1 and 0 1. Then  
 

, ,
, ,

1
1

 

 
for all positive and distinct real numbers a and b.  

Moreover, both bounds are sharp. 
The technique to find other inequalities for functions using power series was given by 

Mortici in [28] and in Ibrahim, Dragomir and Darus in [20] and using this method we can 
extend some of the known inequalities, which can have applications in many fields.  

As in [20], we will consider an analytic function defined by the power series 
∑  with real coefficients and convergent on the unit disk 0, , 0. Let  
be a new power series defined by ∑ | | , where | |  and  is the 
real signum function as in [20]. The power series  has the same radius of convergence as 
the original power series . 

 
 It is necessary to recall the following inequalities which have been obtained by 

Ibrahim, Dragomir and Darus in [20], Theorem 1, Theorem 2 and Theorem 3 for power series 
(see Theorem A, Theorem B and Theorem C). 
 
 Theorem A. Let ∑  and ∑  be two power series with real 
coefficients and convergent on the open disk 0, , 0. If , ∈ , , 0, 1,  

1 so that , | | , | | , | | , | | 	 ∈ 0,  then  

 
1

| | | |
1

| | | | | | 

 
 and  
 

1
| | | |

1
| | | | | | | | | |. 

 
 Theorem B. Let  and  be as in Theorem A. Then one has the inequalities: 
 

1
| | | |

1
| | | | | | | | | | 

 
 and  
 

1
| | | |

1
| | | | | | | | . 

 
 Theorem C. Let  and  be as in Theorem A. Then one has the inequalities: 
 

1
| | | |

1
| | | | | | | | | | | | | | 

 
 and  



About some power series inequalities and …                                                                        Loredana Ciurdariu 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

423

1
| | | |

1
| | | | | | | | . 

 
As in [12], let H be a Hilbert space and ) the trace class operators in . We 

define the trace of a trace class operator ∈  to be ∑ ,∈  , where 
∈  is an orthonormal basis of H.  

If H is finit dimensional then we can see that this coincides with usual definition of the 
trace. It is known, see [12] and the references therein, that previous series converges 
absolutely and it is independent of the choice of ∈ . 

A trace inequality via Kittaneh-Manasrah result was proven by Dragomir in [12], 
Theorem 1 (see Theorem D). 
 
 Theorem D. Let A, B be two positive operators and , ∈  with , 0. 
Then for any ∈ 0,1  we have 
 

2  

 

1  

 
 

2 , 

 
where 1 ,  and 1 , . 

We recall the definition of the Frobenius norm, known as Hilbert-Schmidt norm. For 
any  in , where  is the set of  square matrix we have: 

 

|| || | ∗ |
,

. 

 
The following inequality from [1] improves the Frobenius norm version of Young’s 

inequality given by Kosaki [24], Bhatia and Parthasarathy [5] and [18, 22] (see below 
Theorem E). 
 
Theorem E. Let ,  be real numbers with 0 	 1. If , , ∈  with  
A and B positive semidefinite, then we have 
 

|| 1 || | |

||	 1 	 || || ||
1
1

, 

 
provided the fracvtion is defined. 
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We recall an improvement of Young’s inequality given in [29] in Theorem 1, which 
will be used below in Section 4. 
 
 Lemma 1 For , 1 and ∈ 0,1  we have 
 

√ √ 	 1  

 

1 √ √ , 

 

 where , 1 ,  and . 
We consider the functions: 
 

, 1 √ √ .  

and  
	

 , 1 1 √ √ .  . 

 
The below figures are graphics of this four functions for a particular value of . 
Related to such Young-type inequalities, often appear the weighted arithmetic mean, 

geometric mean and harmonic mean defined by , 1 	 , ,
 and , , 1 	 , when , 0 and 

∈ 0,1  .  
It is necessary to recall for our goals, that for two positive definite matrices A, B, the  

-weighted arithmetic and geometric mean are defined as  
 

1 	  
 
and  

♯  

 

when . ∈ 	 0,1 . If  then we write only , ♯B. 

It is known that for any two square matrices A, B, A < B if B-A is positive 
semidefinite. Also, A < B if B-A is positive definite, see [1] and [19]. 

As in [8], it is also necessary to recall that for selfadjoint operators , ∈  we 
write  (or ) if , 	 	 ,  for every vector ∈ . We will consider 
for beginning A as being a selfadjoint linear operator on a complex Hilbert space (H; < . , . >). 
The Gelfand map establishes a *- isometrically isomorphism Ф between the set C(Sp(A)) of 
all continuous functions defined on the spectrum of A, denoted Sp(A), and the C* - algebra 
C*(A) generated by A and the identity operator 1H on H as follows: For any , ∈
C Sp A 	and for any ⍺, ∈  we have 
(i) Ф( f+ g) =		⍺ Ф(f) +  Ф (g); 
(ii) Ф(fg) = Ф(f) Ф (g) and Ф (f)= Ф ( ∗); 
(iii) || Ф(f)|| = ||f|| := ∈  |f(t)|; 
(iv) Ф( )=1  and Ф ( )=A, 
where 1and  for ∈Sp (A). 
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Using this notation, as in [8], we define f(A) := Ф (f) for all 		 ∈ C Sp A  and we 
call it the continuous functional calculus for a selfadjoint operator A. 

It is known that if A is a selfadjoint operator and f is a real valued continuous function 
on Sp(A), then 0 for any ∈ Sp A  implies that 0 i.e.  is a positive 
operator on H. 

In addition, if and f and g are real valued functions on Sp(A) then the following 
property holds:  for any ∈  implies that  in the operator 
order of B(H). 

We consider A, B two positive operators on a complex Hilbert space (H, < . , . >) and 
the following notations for operators: 

 
1 	 ,					 ∈ 0,1 ,		 

 
the weighted operator arithmetic mean and  
 

♯ 		,				 ∈ 0,1 , 

 
the weighted operator geometric mean. 

In addition, we enounciate the definition of the relative operator entropy /  

given in [15, 16] for positive invertible operators A and B, / . 

We recall the definition of the noncommutative perspective, Ф ,

Ф 		 given in [10] for continuous functions  defined on the interval J of real 

numbers, if B is a selfadjoint operator on the Hilbert space H, A is a positive invertible 

operator on H and ⊂	J. 

The aim of this paper is to present new inequalities for functions defined by power 
series with real coefficients. This thing was done in Section 2 in Theorems 2, 3, 4 and 5. Then 
applications for some fundamental complex functions such as exponential and hyperbolic 
functions and also for polylogarithm function are given. Special functions and power series 
have many applications in engineering sciences and applied mathematics. For example, in [3, 
17, 21, 34] and references therein there are many inequalities involving the polylogarithm, 
hypergeometric, Bessel and modified Bessel functions. In Section 3 is given in Theorem 6 a 
version of a Young-type inequality for the Hilbert-Schmidt norm as a generalization of 
Theorem 5.1 from [1] when ∈ .. Section 4 is devoted to trace inequalities, see 
Theorem 7, where a new trace inequality via a scalar Young type inequality presented in [29] 
is stated using the methods given in [12]. 
 
  
2. THE YOUNG-TYPE INEQUALITIES FOR POWER SERIES  

 
 

We start by taking in Theorem 1, ∈ ∗, , ,  instead of  and   

instead of . Then we have the following inequality: 
 

1 1
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1
 

 

where 1 and 1.  

The following results, Theorem 2, 3, 4 and 5 are new refinements of Theorem 2 and 
Theorem 3 from [20] when ∈ . Moreover, these inequalities can be obtained also for the 
modulus of the product of the functions  and , see Corollary 2 (b) and several applications 
to special functions are presented in Corollary 3 and Corollary 4. 
 
Theorem 2. Let ∑  and ∑  be two power series with real 
coefficients and convergent on the open disk 0, , 0.  

If the numbers , , ,,  have the properties 1	, 1	, 1 	,	 

and if , ∈ , , 0	 so that | | , | | , | | , | | ∈ 0.  then the following 
inequality takes place: 

 

1
| | | | | | | |

| | | | | | | |  

 

1
| | | | | | | |

| | | | | | | |  
 

1
| | | | | | | |

| | | | | | | |  

. 
Proof. We start this proof taking into account that the hypothesis  

 
| | , | | , | | , | | ∈ 0,  

 
implies by calculus the following inclusions: 
 

| | | | , | | | | , | | 	| | , | | 	| | , | | | | , | | | | 	 ∈
0, , 0, . 

 

Thus, for example, | | 	| |  . We use the same method as in [20]. 

In this case, we consider 
| |

| |
 and 

| |

| |
, , ∈ 0,1,2,… ,  in previous inequality and 

we have: 
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1 | |
| |

| |
| |

| |

| |

| |

| |
 

 

1 | |
| |

| |
| |

| |
| |

| |
| |

 

 

1 | |
| |

| |
| |

| |

| |

| |

| |
 

 
If we multiply last inequality by | | | |  then we get the following result: 
 

1
| | | | | | | | | | | | | | | |  

 

1
| | | | | | | | | | | | | | | |  

 

1
| | | | | | | | | | | | | | | |  

 
In this point we multiply previous inequality by positive quantities | | and then 

summing over  
 and  from  to  we obtain: 

 

1
| || | | | | || | | |

| || | | | | || | | |

1
| || | | | | || | | |

| || | | | | || | | |  

1
| || | | | | || | | |

| || | | | | || | | |  
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Taking above the limit when → ∞ we finf the desired inequality, because all the 
series whose partial sums are involved are convergent on the disk 0, .  
  
Theorem 3. Let ∑  and ∑  be two power series with real 
coefficients and convergent on the open disk 0, , 0.  

If the numbers , , ,,  are as in Theorem 2 and if , ∈ , , 0	 with 

| | , | | , | | , | | ∈ 0.  then one has the inequality: 
 

1
| | | | | | | |

| | | | | | | |  

 

1
| | | | | | | | | | | | | | | |  

 

1
| | | | | | | |

| | | | | | | |  

 
Proof. First we check that the corresponding products of | | and | | are in 0,  using 

hypothesis and then by choosing | | | |  and | | | |  and using the same method 
as in [20] we will obtain the desired inequality. 
 
Theorem 4. Let ,  and , , ,,  be as in Theorem 2, , ∈ , , 0	 with 

| | , | | , | | , | | ∈ 0. . Then one has the inequality: 
 

1
| | | | | | | |

| | | | | | | |  

 

1
| | | | | | | |

| | | | | | | |  
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1
| | | | | | | |

| | | | | | | |  

 
Proof. We also check that the corresponding products of | | and | | are in 0,  using 
hypothesis. 

This time we replace  by 
| |

| |
 and  by 

| |

| |
 in order to obtain the inequality of the 

theorem. 
 
Theorem 5. Let ,  and , , ,,  be as in Theorem 2, , ∈ , , 0	 with 
| | , | | , | | ∈ 0. . Then the following inequality takes place: 
 

1
| | | | | | | |

| | | | | | | |  

1
| | | | | | | | | | | | | | | |  

 

1
| | | | | | | |

| | | | | | | |  

 
Proof. It is easily to check that the corresponding product of | | and | | are in 0,  using 

hypothesis. Then we choose | | | |  and | | | |  and repeat the same method as 
above. 
 
Corollary 1. Let , , ,  and , , ,  be as in Theorem 2. If 1  and we 
take 1 in Theorem 2 then we have: 
 

1
| | | |

1
| | | | | | | | | | | |  

 
1

| | | |
1

| | | | | | | | | || |  

 
1

| | | |
1

| | | | | | | | | | | | . 
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Corollary 2. (a) If we take  in Corollary 1, then we have: 
 

| | | | | | | | | | | |  

 
| | | | | | | | | || |  

 

| | | | | | | | | | | | . 

 
 (b) Moreover, we give below the following form of the left side of the inequality from 
Theorem 2 and in this form appears the functions  and		 , 
 

| | | | | | | |  

 

1 1
| | | | | | | |  

 
Similar inequalities can be given for the left side of the inequalities from Theorems 3-

5. Now, taking into account that the functions exp , ∈ , , ∈ 0,1 ,		 ln , ∈

0,1,sinh ,	 ∈  are power series with real coefficients and convergent on the open disk 0,1 
we can rewrite the inequalities from Theorem 2, 3, 4, 5 for this functions. 
 

Corollary 3. (a) We consider the function sin ∑
!

, ∈  and we 

see that  
 

sin , ∈ . 
 
Under condition of Corollary 2 (a), the inequality becomes: 
 

sinh | | sinh | | sinh | | | | sinh | | | |  

 
 

sinh | | sinh | | sinh | | | | sinh | |  
 
 

sinh | | sinh | | sinh | | | | sinh | | | | . 

 

(b) We take into account the function exp ∑
!

, ∈  and under 

condition of Corollary 2 (a), the inequality becomes: 
 

exp | | | | exp | | | | | | | |  
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exp | | | | exp | | | | | |  
 

exp | | | | exp | | | | | | | | . 

 

 (c) Now, we consider the function, , ∈ 0,1  and ,  are complex 

numbers as in Theorem 2, then we get: 
 

1
1 | |

1
1 | |

1

1 | | | |

1

1 | | | |
 

 
1

1 | |
1

1 | |
1

1 | | | |
1

1 | |
 

 

1
1 | |

1
1 | |

1

1 | | | |

1

1 | | | |
.  

 
Similar results can be obtained for the function cosh  as well. 
Next we give an inequality as an application to special functions, such as 

polylogarithm, hypergeometric, Bessel and modified Bessel functions for the first kind, taking 
into account that , , , , ,  and  are power series with real 
coefficients and convergent on the open disk 0,1 . For that it is necessary to recall the 
definition of polylogarithm function, :	 

 

	 , 

 
as a power series which converges absolutely for all complex values of the order  and  
when | | 1. 
 
 Corollary 4. If  is the polylogarithm function, then we have, 
 
 

| | | | | | | | | | | |  

 
| | | | | | | | | || |  

 

| | | | | | | | | | | | , 

 
For any , ∈ , , 	 0 under conditions of Corollary 2 (a) when 0,  is 0,1 . 
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3.  NORM INEQUALITIES 
 

  
 The following result is a refinement of Theorem 5.1 from [1]. 

  
 Theorem 6. Let ,  be two real numbers with 0 	 1. If , , ∈  with  

 and  positive semidefinite then the following inequality hold: 
 

	
|| 	 1 	 || || 	 ||  

 

|| 	 1 	 || 	  

 

1
	1

|| 	 1 	 || || 	 || . 

 
Proof. We write, as in [1], , … , ∗ and , … , ∗ where  

 and  are unitary matrices and nonnegative , . If we set ∗  then we get  
 

	 1 	 	 1 	 ∗ 

 

 and ∗. Taking now into account inequality from Theorem 

1  for 2 ∈ ∗ we find that: 
 

	
|| 	 1 	 || || 	 ||  

 

	
	 1 	 | |

,

| |
,

 

 

	
1 | |

,

 

 

1 | |
,

 

 

|| 	 1 	 || 	 . 
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4. SOME TRACE ANALOGUE INEQUALITIES FOR A REFINEMENT OF YOUNG’S 
INEQUALITY 
 
 

Next result is an extension for operators as in Theorem 7, of a trace inequality given in 
[29].  
  
Theorem 7. Let m, M be two real numbers with 1  and A, B be two positive  
operators in  with ⊂ , , ⊂ ,  and , ∈  with , 0.  
Then for any ∈ 0,1  the following inequality takes place: 
 

2 . 

 
. 	 2 	 	  

 
1  

 

1 2 . 

 
. 	 2 	 	 , 

 

where , 1 , 	  and 	  as in Lemma 1. 

 
Proof. We use the same method as in [12], [13]. We take into account the inequality from 
Lemma 1, which holds for any , 1 and using the functional calculus for the 
operator A when 1  is fixed, we get 
 

, 2√ , , . 

 
. , 2 	 log , ,  

 
, 1 , ,  

 

1 , 2√ , , . 

 
. , 2 	 log , , , 

 
for any ∈ , if we denote  by 	 and  by . 

We fix ∈ 0  and then by the functional calculus for the operator B for previous  
inequality, we have, 
 

, || || 2 , , , || || . 

 
. || || , 2 log , log , , || ||  
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, || || 1 , || || , ,  
 

1 , || || 2 , , , || || . 

 
. || || , 2 log , log , , || || , 

 
 for any , ∈ ,  

We put now, ,			  where , ∈  and by the above inequality we 
 obtain, 
 

, , 2 , , ,

,  

 

. , , 2 log , log ,

, ,  
 

, , 1 , , ,

,  
 

1 , , 2 , , ,

,  

 

. , , 2 log , log ,

, , , 

 
for any , ∈ . 

Let ∈  and 
∈

 br two orthonormal bases of H. We take in previous inequality  

, ∈  and , ∈  and then summing over ∈  and ∈ ,  we get the following: 
 

,
∈

,

∈

2 ,
∈

,
∈

,
∈

,
∈

 

 

,
∈

,

∈
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2 log ,
∈

log ,
∈

 

 
 

, ,
∈∈

 

 
 

,
∈

,

∈

1 ,
∈

,
∈

 

 

,
∈

,
∈

 

 

1 ,
∈

,

∈

2 ,
∈

,
∈

,
∈

,
∈

 

 

,
∈

,

∈

 

2 log ,
∈

log ,
∈

 

 

, ,
∈∈

. 

 
Using the properties of the trace we find the desired inequality. 
Next we take instead of B, A and instead of Q, P and then with the same conditions as 

in Theorem 5, we have the following result: 
 
Corollary 5. Let m, M be two real numbers with 1  and A be a positive operator in 

 with ⊂ ,  and ∈  with 0.  Then for any ∈ 0,1  we obtain: 
 

2 2
	 	 	

 

 

_
 



About some power series inequalities and …                                                                        Loredana Ciurdariu 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

436

2 1 2
	 	 	

 

 

where , 1 , 	  and 	  as before. 

 
Corollary 6. If P, Q are two positive invertible operators with , ∈  and 

⊂ , ,  where m, M are two real numbers with 1  then we have: 

 

2
♯

2
/

 

 
♯ ♯

 

 

2 1 	
♯

2
/

 

 

where , 1 , 	  and 	  as before. 

 

 
Figure 1. The function ,  defined on , ,  when 		. 



About some power series inequalities and …                                                                        Loredana Ciurdariu 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

437

 
Figure 2. The function ,  defined on , ,  when 		. 
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