THE METRIC RELATION OF FEUERBACH POINT \& ITS APPLICATIONS

DASARI NAGA VIJAY KRISHNA ${ }^{1}$

Manuscript received: 11.11.2017; Accepted paper: 18.03.2018;
Published online: 30.06.2018.

Abstract

In this article we study the metric relation of Feuerbach point and its applications in proving distance properties related to this point, we also study about Feuerbach Conic and some concurrencies and collinarities concerned about this point.

Keywords: Inner Feuerbach Point, Outer Feuerbach Point, Feuerbach Conic.

1. INTRODUCTION

The famous Feuerbach theorem ([1] and [2]) states that "The nine-point circle of a triangle is tangent internally to the incircle and externally to each of the excircles". Given triangle $A B C$, the inner Feuerbach point F_{e} is the point of tangency with the incircle and exterior Feuerbach points F_{a}, F_{b}, F_{c} are the points of tangency with three excircles. In this note we give the metric relations of these four points (inner and outer Feuerbach points) which are useful in giving the minimal proof for all the fundamental distance properties of these points. Using this relation we can also investigate some new properties of these points. In the conclusion of the article we discuss about a new proof of Feuerbach conic mentioned in the article [3].

In the articles [4] and [5], S'andor Nagydobai Kiss gave the synthetic proof of distance properties of the Feuerbach point, but in this short note we prove all those distance properties using a simple metric relation of this point which is the consequence of Feuerbach theorem. The metric relation whatever we deal throughout the article is actually not a new one, basing on the works of Feuerbach and Euler we just formulated it to the present form.

We make use of standard notations in triangle geometry (see [6]). Given triangle $A B C$, denote by a, b, c the lengths of the sides $B C, C A, A B$ respectively, s the semiperimeter, Δ the area, and $R, r, r_{a}, r_{b}, r_{c}$ the circumradius, inradius and ex radii respectively. Its classical centers are circumcenter O, incenter I, three excenters I_{a}, I_{b}, I_{c}, centroid G, Nine point center N and orthocenter H .

Working with the distance formula, we also make use of $S_{A}=\frac{b^{2}+c^{2}-a^{2}}{2}=b c \cos A$,

$$
\begin{aligned}
& S_{B}=\frac{c^{2}+a^{2}-b^{2}}{2}=a c \cos B \text { and } S_{B}=\frac{c^{2}+a^{2}-b^{2}}{2}=a c \cos B \\
& \text { it is clear that }
\end{aligned}
$$

$$
a S_{A}+b S_{B}+c S_{C}=a b c(\cos A+\cos B+\cos C)=4 \Delta(R+r) .
$$

[^0]And also using Euler's formula we have $O I^{2}=R^{2}-2 R r, O I_{a}{ }^{2}=R^{2}+2 R r_{a}, O I_{b}{ }^{2}=R^{2}+2 R r_{b}$ and $O I_{c}{ }^{2}=R^{2}+2 R r_{c}$

2. MAIN RESULTS

Theorem 2.1. If F_{e} is the inner Feuerbach point, $\mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{c}}$ are exterior Feuerbach points of non equilateral triangle ABC and let M be a finite point in the plane of the triangle then
(A). $F_{e} M^{2}=\frac{R I M^{2}-2 r N M^{2}}{R-2 r}+\frac{R r}{2}$
(B). $F_{a} M^{2}=\frac{R I_{a} M^{2}+2 r_{a} N M^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2}$
(C). $F_{b} M^{2}=\frac{R I_{b} M^{2}+2 r_{b} N M^{2}}{R+2 r_{b}}-\frac{R r_{b}}{2}$
(D). $F_{c} M^{2}=\frac{R I_{c} M^{2}+2 r_{c} N M^{2}}{R+2 r_{c}}-\frac{R r_{c}}{2}$

Proof:

Figure 1.
For proving (A), we apply Stewart's theorem to triangle $\mathrm{MF}_{\mathrm{e}} \mathrm{N}$ with Cevian IM (provided M doesn't lie on line join of N and F_{e}) (Fig. 1).

We get,

$$
\begin{equation*}
N F_{e} \cdot I M^{2}=F_{e} I \cdot N M^{2}+N I \cdot F_{e} M^{2}-F_{e} I \cdot I N \cdot N F_{e} \tag{1}
\end{equation*}
$$

Using Feuerbach theorem the following metric relations are well known
$N F_{e}=N F_{a}=N F_{b}=N F_{c}=\frac{R}{2}$
$I F_{e}=r, I_{a} F_{a}=r_{a}, I_{b} F_{b}=r_{b}, I_{c} F_{c}=r_{c}$
$I N=\frac{R-2 r}{2}, N I_{a}=\frac{R+2 r_{a}}{2}, N I_{b}=\frac{R+2 r_{b}}{2}$ and $N I_{c}=\frac{R+2 r_{c}}{2}$

By replacing these metric relations in (1) and further simplification proves (A).

Figure2.
Now for (b), we consider the triangle $\mathrm{MNI}_{\mathrm{a}}$ in which MF_{a} is a Cevian (Fig. 2).
By applying Stewart's theorem to triangle $\mathrm{MNI}_{\mathrm{a}}$, we get

$$
N I_{a} \cdot F_{a} M^{2}=F_{a} I_{a} \cdot N M^{2}+N F_{a} \cdot I_{a} M^{2}-N F_{a} \cdot F_{a} I_{a} \cdot N I_{a}
$$

Further simplification by replacing the metric relations obtained from Feuerbach theorem gives (B). Similarly we can prove (C) and (D)

Remark:The metric relations presented in Theorem-2.1 are true even if the point M is collinear with the lines formed by join of $\left(N, F_{e}\right),\left(N, F_{a}\right),\left(N, F_{b}\right),\left(N, F_{c}\right)$ and its proof is quite obvious. In the relations we used the directed line segments only.

Lemma 2.1.If P is any point on the nine point circle then
(a). $F_{e} P^{2}=\frac{R}{R-2 r}\left(I P^{2}-r^{2}\right)$
(b). $F_{a} P^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} P^{2}-r_{a}^{2}\right)$
(c). $F_{b} P^{2}=\frac{R}{R+2 r_{b}}\left(I_{b} P^{2}-r_{b}^{2}\right)$
(d). $F_{c} P^{2}=\frac{R}{R+2 r_{c}}\left(I_{c} P^{2}-r_{c}^{2}\right)$

Proof: For proving (a), we proceed as follows:
By fixing M as P in theorem $-2.1(\mathrm{~A})$, we get

$$
\begin{equation*}
F_{e} P^{2}=\frac{R I P^{2}-2 r N P^{2}}{R-2 r}+\frac{R r}{2} \tag{2}
\end{equation*}
$$

Since P is a point on the nine point circle, we have $N P=\frac{R}{2}$. By replacing NP as $\frac{R}{2}$ in (2) and further simplification gives (a). Similarly we can prove (b), (c) and (d).

3. APPLICATIONS OF THEOREM 2.1

Theorem2.2. If F_{e} is the inner Feuerbach point of triangle ABC , and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are the midpoints of the sides $B C, C A, A B$, respectively, then one of the distances $F_{e} X, F_{e} Y, F_{e} Z$ is equal to the sum of other two distances[4, 5, 7].

Proof:

Figure3.
Using Lemma 2.1(a), we have $F_{e} P^{2}=\frac{R}{R-2 r}\left(I P^{2}-r^{2}\right)$. Let us fix P as X, Y and Z (since X, Y and Z are the mid points of the sides so they lie on the nine point circle).

We get,

$$
F_{e} X^{2}=\frac{R}{R-2 r}\left(I X^{2}-r^{2}\right), F_{e} Y^{2}=\frac{R}{R-2 r}\left(I Y^{2}-r^{2}\right) \text { and } F_{e} Z^{2}=\frac{R}{R-2 r}\left(I Z^{2}-r^{2}\right)
$$

Let D, E, F are the points of contact of incircle with the sides BC, CA and AB (Fig. 3). So $B D=B F=s-b, C D=C E=s-c$ and $A E=A F=s-a$

Hence from triangle DIX, by Pythagoras theorem $I X^{2}=I D^{2}+D X^{2}$
$\Rightarrow I X^{2}-r^{2}=D X^{2}=(B X-B D)^{2}=(C D-C X)^{2}=\left(s-b-\frac{a}{2}\right)^{2}=\left(\frac{a}{2}-s+c\right)^{2}=\frac{1}{4}(b-c)^{2}$
So $F_{e} X^{2}=\frac{R}{R-2 r}\left(I X^{2}-r^{2}\right)=\frac{R}{R-2 r}\left(\frac{b-c}{2}\right)^{2}=\frac{R^{2}}{4 O I^{2}}(b-c)^{2}$. It implies

$$
F_{e} X=\frac{R}{2 O I}|b-c|
$$

Similarly we can prove $F_{e} Y=\frac{R}{2 O I}|c-a|$ and $F_{e} Z=\frac{R}{2 O I}|a-b|$. Without loss of generality let us consider $a \geq b \geq c$. It implies one out of the three $|a-b|,|b-c|$ and $|c-a|$ is
equal to the sum of the remaining two.It follows one of the distances $F_{e} X, F_{e} Y, F_{e} Z$ is equal to the sum of other two distances.

Theorem2.3. If the nine-point circle touches the A-excircle at F_{a}, then one of $F_{a} X, F_{a} Y, F_{a} Z$ is the sum of the remaining two [4, 5, 7].

Proof: Using Lemma 2.1(b), we have

$$
\begin{equation*}
F_{a} P^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} P^{2}-r_{a}^{2}\right) \tag{3}
\end{equation*}
$$

Let us fix P as X, since X is also lies on nine point circle, we get

$$
F_{a} X^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} X^{2}-r_{a}^{2}\right)
$$

Let $\mathrm{D}_{\mathrm{A}}, \mathrm{E}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}$ are the points of contact of A-excircle with the sides BC, CA and AB (Fig. 4). So $\mathrm{BD}_{\mathrm{A}}=\mathrm{BF}_{\mathrm{A}}=\mathrm{s}-\mathrm{c}, \mathrm{AE}_{\mathrm{A}}=\mathrm{AF}_{\mathrm{A}}=\mathrm{s}, \mathrm{CD}_{\mathrm{A}}=\mathrm{CE}_{\mathrm{A}}=\mathrm{s}-\mathrm{b}$ and $\mathrm{AE}_{\mathrm{A}}=\mathrm{AF}_{\mathrm{A}}=$ s. Hence from triangle $\mathrm{D}_{\mathrm{A}} \mathrm{I}_{\mathrm{a}} \mathrm{X}$, by Pythagoras theorem $I_{a} X^{2}=I_{a} D_{A}{ }^{2}+D_{A} X^{2}$

$$
\Rightarrow I_{a} X^{2}-r_{a}^{2}=D_{A} X^{2}=\left(B X-B D_{A}\right)^{2}=\left(C D_{A}-C X\right)^{2}=\left(\frac{a}{2}-s+c\right)^{2}=\left(s-b-\frac{a}{2}\right)^{2}=\frac{1}{4}(b-c)^{2}
$$

So $F_{a} X^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} X^{2}-r_{a}{ }^{2}\right)=\frac{R}{R+2 r_{a}}\left(\frac{b-c}{2}\right)^{2}=\frac{R^{2}}{4 O I_{a}{ }^{2}}(b-c)^{2}$. It implies

$$
F_{a} X=\frac{R}{2 O I_{a}}|b-c|
$$

In the similar manner to get the values $F_{a} Y$ and $F_{a} Z$, replace P in (3) with Y and Z (since Y and Z also lie on nine point circle), we get $F_{a} Y^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} Y^{2}-r_{a}{ }^{2}\right)$ and

$$
F_{a} Z^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} Z^{2}-r_{a}^{2}\right)
$$

Now it is very clear that for triangles $\mathrm{E}_{\mathrm{A}} \mathrm{I}_{\mathrm{a}} \mathrm{Y}, \mathrm{F}_{\mathrm{A}} \mathrm{I}_{\mathrm{a}} \mathrm{Z}$, using Pythagoras theorem, we have

$$
\begin{gathered}
I_{a} Y^{2}=I_{a} E_{A}{ }^{2}+E_{A} Y^{2} \text { and } I_{a} Z^{2}=I_{a} F_{A}{ }^{2}+F_{A} Z^{2} \\
\Rightarrow I_{a} Y^{2}-r_{a}{ }^{2}=E_{A} Y^{2}=\left(C Y+C E_{A}\right)^{2}=\left(A E_{A}-A Y\right)^{2}=\left(\frac{b}{2}+s-b\right)^{2}=\left(s-\frac{b}{2}\right)^{2}=\frac{1}{4}(a+c)^{2}
\end{gathered}
$$

Figure 4.

Similarly
$\Rightarrow I_{a} Z^{2}-r_{a}^{2}=F_{A} Z^{2}=\left(B Z+B F_{A}\right)^{2}=\left(A F_{A}-A Z\right)^{2}=\left(\frac{c}{2}+s-c\right)^{2}=\left(s-\frac{c}{2}\right)^{2}=\frac{1}{4}(a+b)^{2}$
So

$$
F_{a} Y^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} Y^{2}-r_{a}^{2}\right)=\frac{R}{R+2 r_{a}}\left(\frac{a+b}{2}\right)^{2}=\frac{R^{2}}{4 O I_{a}{ }^{2}}(a+b)^{2} \Rightarrow F_{a} Y=\frac{R}{2 O I_{a}}|a+b|
$$

and $F_{a} Z^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} Z^{2}-r_{a}{ }^{2}\right)=\frac{R}{R+2 r_{a}}\left(\frac{a+c}{2}\right)^{2}=\frac{R^{2}}{4 O I_{a}{ }^{2}}(a+c)^{2} \Rightarrow F_{a} Z=\frac{R}{2 O I_{a}}|a+c|$.
Without loss of generality let us consider $a \geq b \geq c$. It implies one out of the three $|b-c|,|a+b|$ and $|a+c|$ is equal to the sum of the remaining two. It follows one of $\mathrm{F}_{\mathrm{a}} \mathrm{X}, \mathrm{F}_{\mathrm{a}} \mathrm{Y}$, $\mathrm{F}_{\mathrm{a}} \mathrm{Z}$ is the sum of the remaining two.

Remark: The similar results mentioned in Theorem 2.3 are also holds true, for the other two excircles. For proof we can proceed as we dealt in Theorem2.3.

Theorem 2.4. The distances from the Feuerbach point F_{e} to the vertices of triangle ABC are given by

$$
A F_{e}^{2}=\frac{(s-a)^{2} R-S_{A}}{R-2 r}, B F_{e}^{2}=\frac{(s-b)^{2} R-S_{B}}{R-2 r} \text { and } C F_{e}^{2}=\frac{(s-c)^{2} R-S_{C}}{R-2 r}[4,5,7]
$$

Proof: Using Theorem2.1(A), we have

$$
\begin{equation*}
F_{e} M^{2}=\frac{R I M^{2}-2 r N M^{2}}{R-2 r}+\frac{R r}{2} \tag{2.1A}
\end{equation*}
$$

Since (2.1A) is true for any M let us fix M as A, B and C, we get,

$$
\left.\begin{array}{l}
F_{e} A^{2}=\frac{R I A^{2}-2 r N A^{2}}{R-2 r}+\frac{R r}{2} \\
F_{e} B^{2}=\frac{R I B^{2}-2 r N B^{2}}{R-2 r}+\frac{R r}{2} \tag{4}\\
F_{e} C^{2}=\frac{R I C^{2}-2 r N C^{2}}{R-2 r}+\frac{R r}{2}
\end{array}\right\}
$$

and it is well known that

$$
I A^{2}=r^{2}+(s-a)^{2}, I B^{2}=r^{2}+(s-b)^{2}, I C^{2}=r^{2}+(s-c)^{2}
$$

and

$$
4 N A^{2}=b^{2}+c^{2}-a^{2}+R^{2}=2 S_{A}+R^{2}, 4 N B^{2}=a^{2}+c^{2}-b^{2}+R^{2}=2 S_{B}+R^{2}, 4 N C^{2}=2 S_{C}+R^{2}
$$

By replacing these relations in (4) and further simplification proves the conclusions

$$
A F_{e}^{2}=\frac{(s-a)^{2} R-S_{A}}{R-2 r}, B F_{e}^{2}=\frac{(s-b)^{2} R-S_{B}}{R-2 r} \text { and } C F_{e}^{2}=\frac{(s-c)^{2} R-S_{C}}{R-2 r}
$$

Theorem2.5. The distances from the Feuerbach point F_{a} to the vertices of triangle ABC are given by $A F_{a}^{2}=\frac{s^{2} R+r_{a} S_{A}}{R+2 r_{a}}, B F_{a}^{2}=\frac{(s-c)^{2} R+r_{a} S_{B}}{R+2 r_{a}}$ and $C F_{a}{ }^{2}=\frac{(s-b)^{2} R+r_{a} S_{C}}{R+2 r_{a}}[4,5,7]$.

Proof: Using Theorem2.1(B), we have

$$
\begin{equation*}
F_{a} M^{2}=\frac{R I_{a} M^{2}+2 r_{a} N M^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2} \tag{2.1B}
\end{equation*}
$$

Since (2.1B) is true for any M, let us fix M as A, B and C, we get

$$
\left.\begin{array}{l}
F_{a} A^{2}=\frac{R I_{a} A^{2}+2 r_{a} N A^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2} \\
F_{a} B^{2}=\frac{R I_{a} B^{2}+2 r_{a} N B^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2} \tag{5}\\
F_{a} C^{2}=\frac{R I_{a} C^{2}+2 r_{a} N C^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2}
\end{array}\right\}
$$

and we are familiar with the results,

$$
I_{a} A^{2}=r_{a}^{2}+s^{2}, I_{a} B^{2}=r_{a}^{2}+(s-c)^{2}, I_{a} C^{2}=r_{a}^{2}+(s-b)^{2}
$$

and

$$
4 N A^{2}=2 S_{A}+R^{2}, 4 N B^{2}=2 S_{B}+R^{2}, 4 N C^{2}=2 S_{C}+R^{2}
$$

By replacing these relations in (5) and further simplification proves the conclusions

$$
A F_{a}^{2}=\frac{s^{2} R+r_{a} S_{A}}{R+2 r_{a}}, B F_{a}^{2}=\frac{(s-c)^{2} R+r_{a} S_{B}}{R+2 r_{a}} \text { and } C F_{a}^{2}=\frac{(s-b)^{2} R+r_{a} S_{C}}{R+2 r_{a}} \text {. }
$$

Remark: The similar results mentioned in Theorem 2.5 also holds true for the other two excircles. For proof we can proceed as we dealt inTheorem 2.5.

Theorem2.6. If $\mathrm{F}_{\mathrm{e}}, \mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}$ and F_{c} are the inner and outer Feuerbach points then

$$
F_{e} F_{a}=\frac{|b-c| R^{2}}{O I . O I_{a}}, F_{e} F_{b}=\frac{|c-a| R^{2}}{O I . O I_{b}} \text { and } F_{e} F_{c}=\frac{|a-b| R^{2}}{O I . O I_{c}}[4,5,7] .
$$

Proof: For proving first formula we proceed as follows:
Clearly from Lemma 2.1(a), we have, If P is any point on the nine point circle then

$$
\begin{equation*}
F_{e} P^{2}=\frac{R}{R-2 r}\left(I P^{2}-r^{2}\right) \tag{2.1a}
\end{equation*}
$$

Since (2.1a) is true for any P, let us fix P as F_{a}, we get

$$
\begin{equation*}
F_{e} F_{a}^{2}=\frac{R}{R-2 r}\left(I F_{a}^{2}-r^{2}\right) \tag{6}
\end{equation*}
$$

but using (2.1B), we have $F_{a} M^{2}=\frac{R I_{a} M^{2}+2 r_{a} N M^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2}$

By replacing M as I in (2.1B) we get $F_{a} I^{2}=\frac{R I_{a} I^{2}+2 r_{a} N I^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2}$. Now from (6),

$$
\begin{equation*}
F_{e} F_{a}^{2}=\frac{R}{R-2 r}\left(\frac{R I_{a} I^{2}+2 r_{a} N I^{2}}{R+2 r_{a}}-\frac{R r_{a}}{2}-r^{2}\right) \tag{7}
\end{equation*}
$$

Further simplification by replacing $I_{a}=4 R \sin \left(\frac{A}{2}\right)$ and $N I=\left(\frac{R-2 r}{2}\right)$, gives

$$
F_{e} F_{a}^{2}=\frac{R}{2(R-2 r)\left(R+2 r_{a}\right)}\left(32 R^{3} \sin ^{2}\left(\frac{A}{2}\right)+4 r_{a}\left(\frac{R-2 r}{2}\right)^{2}-R r_{a}\left(R+2 r_{a}\right)-2 r^{2}\left(R+2 r_{a}\right)\right)
$$

It further implies $\quad F_{e} F_{a}{ }^{2}=\frac{2 R^{2}}{2(R-2 r)\left(R+2 r_{a}\right)}\left(16 R^{2} \sin ^{2}\left(\frac{A}{2}\right)-\left(r+r_{a}\right)^{2}\right)$. Further simplification by replacing $r+r_{a}=4 R \sin \left(\frac{A}{2}\right) \cos \left(\frac{B-C}{2}\right)$, gives

$$
F_{e} F_{a}^{2}=\frac{16 R^{4} \sin ^{2}\left(\frac{A}{2}\right)}{(R-2 r)\left(R+2 r_{a}\right)}\left(1-\cos ^{2}\left(\frac{B-C}{2}\right)\right)
$$

$$
\Rightarrow F_{e} F_{a}^{2}=\frac{4 R^{6} 4 \sin ^{2}\left(\frac{A}{2}\right) \sin ^{2}\left(\frac{B-C}{2}\right)}{O I^{2} . O I_{a}{ }^{2}}=\frac{4 R^{6}}{O I^{2} . O I_{a}{ }^{2}}(\sin B-\sin C)^{2}=\frac{R^{4}}{O I^{2} . O I_{a}{ }^{2}}(b-c)^{2}
$$

It implies $F_{e} F_{a}=\frac{R^{2}}{O I \cdot O I_{a}}|b-c|$. Similarly we can prove $F_{e} F_{b}=\frac{|c-a| R^{2}}{O I \cdot O I_{b}}$ and $F_{e} F_{c}=\frac{|a-b| R^{2}}{O I . O I_{c}}$.

Theorem2.7. If $\mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}$ and F_{c} are outer Feuerbach points then

$$
F_{a} F_{b}=\frac{(a+b) R^{2}}{O I_{a} \cdot O I_{b}}, F_{b} F_{c}=\frac{(b+c) R^{2}}{O I_{b} \cdot O I_{c}} \text { and } F_{c} F_{a}=\frac{(c+a) R^{2}}{O I_{c} \cdot O I_{a}}[4,5,7] .
$$

Proof: For proving first formula we proceed as follows:
Clearly from Lemma 2.1(b), we have, If P is any point on the nine point circle then

$$
\begin{equation*}
F_{a} P^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} P^{2}-r_{a}^{2}\right) \tag{2.1b}
\end{equation*}
$$

Now since (2.1b) is true for any P, let us fix P as F_{b}, we get

$$
\begin{equation*}
F_{a} F_{b}^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} F_{b}^{2}-r_{a}^{2}\right) \tag{8}
\end{equation*}
$$

But using (2.1C), we have $F_{b} M^{2}=\frac{R I_{b} M^{2}+2 r_{b} N M^{2}}{R+2 r_{b}}-\frac{R r_{b}}{2}$
by replacing M as I_{a} in $(2.1 \mathrm{C})$ we get $F_{b} I_{a}{ }^{2}=\frac{R I_{b} I_{a}{ }^{2}+2 r_{b} N I_{a}{ }^{2}}{R+2 r_{b}}-\frac{R r_{b}}{2}$
Now from (7),

$$
\begin{equation*}
F_{a} F_{b}{ }^{2}=\frac{R}{R+2 r_{a}}\left(\frac{R I_{a} I_{b}{ }^{2}+2 r_{b} N I_{a}{ }^{2}}{R+2 r_{b}}-\frac{R r_{b}}{2}-r_{a}{ }^{2}\right) \tag{9}
\end{equation*}
$$

Further simplification by replacing $I_{a} I_{b}=4 R \cos \left(\frac{C}{2}\right)$ and $N I_{a}=\left(\frac{R+2 r_{a}}{2}\right)$, gives

$$
F_{a} F_{b}^{2}=\frac{R}{2\left(R+2 r_{a}\right)\left(R+2 r_{b}\right)}\left(32 R^{3} \cos ^{2}\left(\frac{C}{2}\right)+4 r_{b}\left(\frac{R+2 r_{a}}{2}\right)^{2}-R r_{b}\left(R+2 r_{b}\right)-2 r_{a}^{2}\left(R+2 r_{b}\right)\right)
$$

It further implies $F_{a} F_{b}^{2}=\frac{2 R^{2}}{2\left(R+2 r_{a}\right)\left(R+2 r_{b}\right)}\left(16 R^{2} \cos ^{2}\left(\frac{C}{2}\right)-\left(r_{a}-r_{b}\right)^{2}\right)$.
Further simplification by replacing $r_{a}-r_{b}=4 R \cos \left(\frac{C}{2}\right) \sin \left(\frac{A-B}{2}\right)$ gives

$$
\begin{aligned}
& F_{a} F_{b}^{2}=\frac{16 R^{4} \cos ^{2}\left(\frac{C}{2}\right)}{\left(R+2 r_{a}\right)\left(R+2 r_{b}\right)}\left(1-\sin ^{2}\left(\frac{A-B}{2}\right)\right) \Rightarrow F_{a} F_{b}^{2}=\frac{4 R^{6} 4 \cos ^{2}\left(\frac{C}{2}\right) \cos ^{2}\left(\frac{A-B}{2}\right)}{O I_{a}{ }^{2} \cdot O I_{b}{ }^{2}} \\
& =\frac{4 R^{6}}{O I_{a}{ }^{2} \cdot O I_{b}{ }^{2}}(\sin A+\sin B)^{2}=\frac{R^{4}}{O I_{a}{ }^{2} \cdot O I_{b}^{2}}(a+b)^{2}
\end{aligned}
$$

It implies $F_{a} F_{b}=\frac{R^{2}}{O I_{a} \cdot O I_{b}}(a+b)$. Similarly we can prove

$$
F_{b} F_{c}=\frac{(b+c) R^{2}}{O I_{b} \cdot O I_{c}} \text { and } F_{c} F_{a}=\frac{(c+a) R^{2}}{O I_{c} \cdot O I_{a}}
$$

Theorem2.8. If $\mathrm{F}_{\mathrm{e}}, \mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}$ and F_{c} are the inner and outer Feuerbach points then

$$
\frac{\left(F_{a} I^{2}-r^{2}\right)}{\left(F_{e} I_{a}^{2}-r_{a}^{2}\right)}\left(R+2 r_{a}\right)=\frac{\left(F_{b} I^{2}-r^{2}\right)}{\left(F_{e} I_{b}^{2}-r_{b}^{2}\right)}\left(R+2 r_{b}\right)=\frac{\left(F_{c} I^{2}-r^{2}\right)}{\left(F_{e} I_{c}^{2}-r_{c}^{2}\right)}\left(R+2 r_{c}\right)=(R-2 r)
$$

Proof: It is clear from Lemma 2.1(a), $F_{e} P^{2}=\frac{R}{R-2 r}\left(I P^{2}-r^{2}\right)$.
Fix P as F_{a}, we get

$$
F_{e} F_{a}^{2}=\frac{R}{R-2 r}\left(I F_{a}^{2}-r^{2}\right)(10)
$$

Similarly by fixing P as F_{e} in Lemma 2.1(b), we get

$$
\begin{equation*}
F_{a} F_{e}^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} F_{e}^{2}-r_{a}^{2}\right) \tag{11}
\end{equation*}
$$

Now from (10) and (11), it is clear that

$$
\begin{equation*}
\frac{F_{a} I^{2}-r^{2}}{F_{e} I_{a}{ }^{2}-r_{a}{ }^{2}}=\frac{R-2 r}{R+2 r_{a}}=\frac{N I}{N I_{a}}=\frac{O I}{O I_{a}} \tag{12}
\end{equation*}
$$

Similarly we can prove

$$
\begin{equation*}
\frac{F_{b} I^{2}-r^{2}}{F_{e} I_{b}^{2}-r_{b}^{2}}=\frac{R-2 r}{R+2 r_{b}}=\frac{N I}{N I_{b}}=\frac{O I}{O I_{b}} \tag{13}
\end{equation*}
$$

and $\frac{F_{c} I^{2}-r^{2}}{F_{e} I_{c}{ }^{2}-r_{c}{ }^{2}}=\frac{R-2 r}{R+2 r_{c}}=\frac{N I}{N I_{c}}=\frac{O I}{O I_{c}}$
Using (12), (13) and (14) we can prove the desired result

$$
\frac{\left(F_{a} I^{2}-r^{2}\right)}{\left(F_{e} I_{a}^{2}-r_{a}^{2}\right)}\left(R+2 r_{a}\right)=\frac{\left(F_{b} I^{2}-r^{2}\right)}{\left(F_{e} I_{b}^{2}-r_{b}^{2}\right)}\left(R+2 r_{b}\right)=\frac{\left(F_{c} I^{2}-r^{2}\right)}{\left(F_{e} I_{c}^{2}-r_{c}^{2}\right)}\left(R+2 r_{c}\right)=(R-2 r)
$$

Theorem2.9. If $\mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}$ and F_{c} are outer Feuerbach points then

$$
\left(F_{a} I_{b}^{2}-r_{b}^{2}\right)\left(F_{b} I_{c}^{2}-r_{c}^{2}\right)\left(F_{c} I_{a}^{2}-r_{a}^{2}\right)=\left(F_{b} I_{a}^{2}-r_{a}^{2}\right)\left(F_{c} I_{b}^{2}-r_{b}^{2}\right)\left(F_{a} I_{c}^{2}-r_{c}^{2}\right)
$$

Proof: It is clear from lemma-2.1(b), $F_{a} P^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} P^{2}-r_{a}^{2}\right)$
Fix P as F_{b}, we get

$$
\begin{equation*}
F_{a} F_{b}^{2}=\frac{R}{R+2 r_{a}}\left(I_{a} F_{b}^{2}-r_{a}^{2}\right) \tag{15}
\end{equation*}
$$

Similarly by fixing P as F_{a} in lemma-2.1(c), we get

$$
\begin{equation*}
F_{b} F_{a}^{2}=\frac{R}{R+2 r_{b}}\left(I_{b} F_{a}^{2}-r_{b}^{2}\right) \tag{16}
\end{equation*}
$$

Now from (15) and (16), it is clear that

$$
\begin{equation*}
\frac{F_{a} I_{b}{ }^{2}-r_{b}{ }^{2}}{F_{b} I_{a}{ }^{2}-r_{a}{ }^{2}}=\frac{R+2 r_{b}}{R+2 r_{a}}=\frac{N I_{b}}{N I_{a}}=\frac{O I_{b}}{O I_{a}} \tag{17}
\end{equation*}
$$

Similarly we can prove

$$
\begin{equation*}
\frac{F_{b} I_{c}{ }^{2}-r_{c}{ }^{2}}{F_{c} I_{b}{ }^{2}-r_{b}{ }^{2}}=\frac{R+2 r_{c}}{R+2 r_{b}}=\frac{N I_{c}}{N I_{b}}=\frac{O I_{c}}{O I_{b}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{F_{c} I_{a}{ }^{2}-r_{a}{ }^{2}}{F_{a} I_{c}{ }^{2}-r_{c}{ }^{2}}=\frac{R+2 r_{a}}{R+2 r_{c}}=\frac{N I_{a}}{N I_{c}}=\frac{O I_{a}}{O I_{c}} \tag{19}
\end{equation*}
$$

By multiplying (17), (18) and (19) we get desired result

$$
\left(F_{a} I_{b}{ }^{2}-r_{b}{ }^{2}\right)\left(F_{b} I_{c}{ }^{2}-r_{c}{ }^{2}\right)\left(F_{c} I_{a}{ }^{2}-r_{a}^{2}\right)=\left(F_{b} I_{a}{ }^{2}-r_{a}{ }^{2}\right)\left(F_{c} I_{b}{ }^{2}-r_{b}{ }^{2}\right)\left(F_{a} I_{c}{ }^{2}-r_{c}{ }^{2}\right)
$$

To discuss one more theorem related to these points (inner and outer Feuerbach points) we need a list of lemmas which we are presenting here without proofs.

Lemma 2.2. Let A_{a}, A_{b}, A_{c} are the feet of internal and external angular bisector of angle $A($ A_{b} closer to the vertex B and A_{c} closer to the vertex C) on the side BC respectively, similarly define the points $B_{a}, B_{b}, B_{c}, C_{a}, C_{b}$ and C_{c}. If F_{e}, F_{a}, F_{b} and F_{c} are the inner and outer Feuerbach points then the following pair of triangles are directly similar $[8,9]$.
(a) The triangle with feet of internal angular bisectors of the angles A, B and C as vertices is directly similar to the triangle formed by outer Feuerbach points.
That is $\Delta A_{a} B_{b} C_{c} \sim \Delta F_{a} F_{b} F_{c}$.
(b) The triangle with feet of two external angular bisectors and one internal angular bisector as vertices is directly similar to the triangle formed by two outer Feuerbach points and one inner Feuerbach point.
That is $\Delta A_{b} B_{a} C_{c} \sim \Delta F_{b} F_{a} F_{e}, \Delta A_{c} B_{b} C_{a} \sim \Delta F_{c} F_{e} F_{a}$ and $\Delta A_{a} B_{c} C_{b} \sim \Delta F_{e} F_{c} F_{b}$.
Lemma 2.3. The lines $\mathrm{AF}_{\mathrm{a}}, \mathrm{BF}_{\mathrm{b}}$ and CF_{c} are concurrent at $\mathrm{X}(12)$, which is collinear with the points $\mathrm{F}_{\mathrm{e}}, \mathrm{I}$ and N. [10]

Lemma 2.4. The following set of points is collinear [8]:
(a) The points $\mathrm{F}_{\mathrm{e}}, \mathrm{A}_{\mathrm{a}}, \mathrm{F}_{\mathrm{a}}$ are collinear.
(b) The points $\mathrm{F}_{\mathrm{e}}, \mathrm{B}_{\mathrm{b}}, \mathrm{F}_{\mathrm{b}}$ are collinear.
(c) The points $\mathrm{F}_{\mathrm{e}}, \mathrm{C}_{\mathrm{c}}, \mathrm{F}_{\mathrm{c}}$ are collinear.
(d) The points either $\mathrm{C}_{\mathrm{b}}, \mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}$, or $\mathrm{C}_{\mathrm{a}}, \mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}$ are collinear.
(e) The points either $\mathrm{B}_{\mathrm{c}}, \mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{c}}$, or $\mathrm{B}_{\mathrm{a}}, \mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{c}}$ are collinear.
(f) The points either A_{c}, F_{b}, F_{c}, or A_{b}, F_{b}, F_{c}, are collinear.

That is the feet of internal and external bisectors lies in 6 lines defined by $F_{e}, F_{a}, F_{b}, F_{c}[11-$ 13].

Lemma 2.5. Let A_{a}, B_{b} and C_{c} be the feet of internal bisectors on respective sides of triangle. Lines $A_{a} B_{b}=1_{1}, B_{b} C_{c}=1_{2}, C_{c} A_{a}=l_{3}$ are called the axes of internal bisectors. Then each of these lines passes through the foot of the respective external bisector and that 1_{k} is perpendicular to line $\mathrm{IO}_{\mathrm{k}}(\mathrm{k}=1,2,3)$ [11].

The feet of external bisectors are collinear. (This line is called the axe of external bisectors, we note it 1). Line 1 is perpendicular to line IO [11].

Lemma 2.6. Let ${ }_{b} \mathrm{~F}_{\mathrm{a}},{ }_{\mathrm{c}} \mathrm{F}_{\mathrm{a}}$ are the points of intersection of the lines $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{c}}$ and $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}$ with side BC , similiarly the points ${ }_{a} F_{b},{ }_{c} \mathrm{~F}_{\mathrm{b}},{ }_{a} \mathrm{~F}_{\mathrm{c}},{ }_{b} \mathrm{~F}_{\mathrm{c}}$ are defined then
(a) The lines through the points $\mathrm{A},{ }_{c} \mathrm{~F}_{\mathrm{a}}$ and $\mathrm{B},{ }_{c} \mathrm{~F}_{\mathrm{b}}$ are concurrent and the point of concurrency lies on the internal angular bisector $\left(\mathrm{CC}_{\mathrm{c}}\right)$ of angle C .
(b) The lines through the points $\mathrm{C},{ }_{a} \mathrm{~F}_{\mathrm{c}}$ and $\mathrm{B},{ }_{a} \mathrm{~F}_{\mathrm{b}}$ are concurrent and the point of concurrency lies on the Internal angular bisector $\left(\mathrm{AA}_{\mathrm{a}}\right)$ of angle A .
(c) The lines through the points $\mathrm{A},{ }_{\mathrm{b}} \mathrm{F}_{\mathrm{a}}$ and $\mathrm{C},{ }_{b} \mathrm{~F}_{\mathrm{c}}$ are concurrent and the point of concurrency lies on the internal angular bisector $\left(\mathrm{BB}_{\mathrm{b}}\right)$ of angle A .
For (a), (b), (c) see Fig. 5.

Figure 5.
(d) The lines through the points $\mathrm{A},{ }_{\mathrm{b}} \mathrm{F}_{\mathrm{a}}$ and $\mathrm{B},{ }_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}$ are concurrent and the point of concurrency let us call as V_{C}.
(e) The lines through the points $\mathrm{C},{ }_{b} \mathrm{~F}_{\mathrm{c}}$ and $\mathrm{B},{ }_{c} \mathrm{~F}_{\mathrm{b}}$ are concurrent and the point of concurrency let us call as V_{A}.
(f) The lines through the points $\mathrm{A},{ }_{\mathrm{c}} \mathrm{F}_{\mathrm{a}}$ and $\mathrm{C},{ }_{a} \mathrm{~F}_{\mathrm{c}}$ are concurrent and the point of concurrency let us call as V_{B}.
(g) The points V_{A}, V_{B} and V_{C} are collinear.
(h) The lines formed by join of $\left(\mathrm{C}, \mathrm{V}_{\mathrm{c}}\right),\left(\mathrm{B}, \mathrm{V}_{\mathrm{b}}\right)$ and $\left(\mathrm{A}, \mathrm{V}_{\mathrm{a}}\right)$ are concurrent at V . For (d), (e), (f), (g), (h) see Fig. 6.

Figure 6.
Theorem 2.10. The six points ${ }_{\mathrm{b}} \mathrm{F}_{\mathrm{a}},{ }_{\mathrm{c}} \mathrm{F}_{\mathrm{a}},{ }_{\mathrm{c}} \mathrm{F}_{\mathrm{b}},{ }_{\mathrm{a}} \mathrm{F}_{\mathrm{b}},{ }_{\mathrm{a}} \mathrm{F}_{\mathrm{c}}$ and ${ }_{\mathrm{b}} \mathrm{F}_{\mathrm{c}}$ are defined as stated in lemma-2.5, then these six points lie on a conic, for the recognition sake let us call this conic as Feuerbach conic [3].

Proof: Consider the hexagon whose vertices are ${ }_{b} \mathrm{~F}_{\mathrm{a}},{ }_{c} \mathrm{~F}_{\mathrm{a}},{ }_{\mathrm{c}} \mathrm{F}_{\mathrm{b}},{ }_{\mathrm{a}} \mathrm{F}_{\mathrm{b}},{ }_{\mathrm{a}} \mathrm{F}_{\mathrm{c}}$ and ${ }_{\mathrm{b}} \mathrm{F}_{\mathrm{c}}$. clearly these six points lies on lines $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{b}} \mathrm{F}_{\mathrm{c}}$ and $\mathrm{F}_{\mathrm{c}} \mathrm{F}_{\mathrm{a}}$ in the particular order.

Let us fix $L={ }_{b} F_{a}{ }_{c} F_{a} \bigcap_{a} F_{b}{ }_{a} F_{c}, M={ }_{c} F_{a} F_{b} \bigcap_{a} F_{c}{ }_{b} F_{c}$ and $N={ }_{c} F_{b}{ }_{a} F_{b} \bigcap_{b} F_{c}{ }_{b} F_{a}$.
So as to prove the six points lie on a conic, it is enough to prove that using the converse of Pascal theorem [14], the points L, M and N are collinear (Fig. 7).

Figure 7.

Clearly the line through ${ }_{b} \mathrm{~F}_{\mathrm{a}},{ }_{c} \mathrm{~F}_{\mathrm{a}}$ is BC and the line through ${ }_{\mathrm{a}} \mathrm{F}_{\mathrm{b}},{ }_{\mathrm{a}} \mathrm{F}_{\mathrm{c}}$ is $\mathrm{F}_{\mathrm{b}} \mathrm{F}_{\mathrm{c}}$. Hence their point of intersection L is the feet of external angular bisector (using Lemma2.5). Similarly M and N are the feet of external angular bisectors. That is $L=A_{b}$ or $A_{c}, M=C_{a}$ or C_{b} and $N=B_{a}$ or B_{c}. So by Lemma2.6, the points L, M and N are lie on the axe of external bisectors.Hence they are collinear and the line through L, M and N acts as Pascal line (axe of external bisector) (Fig. 8).

It proves that the six points lie on a conic (Feuerbach Conic).

Figure 8.

Acknowledgement: The author is would like to thank an anonymous referee for his/her kind comments and suggestions, which lead to a better presentation of this paper. The Author is declaring that there is no funding service to the research it is an independent research work.

REFERENCES

[1] Krishna, D.N.V., Global Journal of Science Frontier Research:F Mathematics and Decision Science., 4, 9, 2016.
[2] Krishna, D.N.V., Universal Journal of Applied Mathematics \& Computation., 4, 32, 2016.
[3] Krishna, D.N.V., Forum Geometricorum., 17, 289, 2017.
[4] Kiss, S.N., Forum Geometricorum, 16, 283, 2016.
[5] Kiss, S.N., Forum Geometricorum, 16, 373, 2016.
[6] Yiu, P., Introduction to the Geometry of the Triangle, Florida Atlantic University Course Notes, 2001 (with corrections 2013), available online at http://math.fau.edu/Yiu/Geometry.html.
[7] Kodera, T., Tohoku Mathematical Journal, 41, 455, 1935.
[8] Emelyanov, L., Emelyanov, T., Forum Geometricorum, 1, 121, 2001.
[9] Sharygin, I.F., Problem № 586 (in Russian), Mir Publications, .
[10] Kimberling, C., Encyclopedia of Triangle Centers, available online at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
[11] Emelyanov, L., Emelyanov , T., Around of Feet of Bisectors - Introduction, Some Theoretical Facts, International Mathematical Tournament of Towns, 2017.
[12] Emelyanov, L., Emelyanov , T., Around of Feet of Bisectors -Main Problems, Theory, International Mathematical Tournament of Towns, 2017.
[13] Emelyanov, L., Emelyanov, T., Around of Feet of Bisectors -Main Problems, Using solutions by Bazhov I. And Chekalkin S, International Mathematical Tournament of Towns, 2017.
[14] Palej, M., Journal for Geometry and Graphics, 1,1, 1997.

[^0]: ${ }^{1}$ Narayana Educational Instutions, Machilipatnam, Bengalore, India.E-mail: vijay9290009015@gmail.com.

