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Abstract. In this paper, we introduce the comparative study of errors in different 

functions using error formula. Some examples are also discussed. This work presents a 

numerical analysis of error formula. Also to check the performance of the considered method 

an error associated with Lagrange Interpolation has considered. Errors are analyzed by 

comparing the actual sampled values with the values obtained by Lagrange’s Interpolation 

formula. 

Keywords: Interpolation, Exponential functions, Trigonometric functions, Logarithmic 

functions. 

 

 

1. INTRODUCTION  

 

 

Numerical analysis is the area of  mathematics and computer sciences that creates 

analyzes and impliments algorithms for solving numerically the problems of continuous 

mathematics.[1]  Such problem originate generally from real-world applications of Algebra, 

geometry and calculas and they involve variables which vary continuously: these problem 

occur throughout the natural sciences, social sciences, engineering, medicine and business. 

From very ancient time Interpolation is being used for various purposes [2]. 

In this paper Lagrange’s Interpolation Error formula is used. 
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For higher order Interpolation: 
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Theorem: If g(x) is a continuous function on same interval [a, b] and differentiable on 

(a, b) and if g(a) = 0, g(b) = 0, then there is atleast one point   inside (a, b) for which g’  ) = 

0. 

We notice that if x=x0 or x=x1 then E1(f; x) = 0. If x   (x0,  x1), then for this x we 

define a function g(t)  
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It is easy to varify that g(t) = 0 at the three distinct points t = x0, t = x1 and t = x. The 

function g(t) satisfies the conditions of the Rolle’s theorem. 

Applying the Rolle’s theorem on the intervals (x0, t) and (t, x1) separately, we get 

 

g’(1) = 0, x0 < 1 < t and g’(2) = 0, t < 2 < x1. 

Now  
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Setting    g''() = 0 and solving above equation for f(x) we get 
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Therefore, the truncation error in linear interpolation is given by 
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1
; ''

2
E f x x x x x f    .    

Analysis and implementation 

Truncation Error Bounds - 

Linear Interpolation- 
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1
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2
E f x x x x x f    . 

 

Quadratic Interpolation 

 

E2(f; x) = f(x) – p2(x) 

 

E2(f; x) = 
 

  
(x-x0)(x – x1)(x – x2)f’’’( ) 

 

Higher order Interpolation 
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1
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E f x x x x x x x f     . 

 

where       0 1 ... nw x x x x x x x     [4]. 
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Numerical examples 
 

Example 1. [5] 

x y=logx 

2 0.30103 

2.5 0.39794 

3 0.47712 
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= 0.00175 

 

Example 2. 

x y=logx 

2 0.30103 

2.5 0.39794 

3 0.47712 

3.5 0.54407 

4 0.60206 

 

 ;nE f x  = 0.000273 

 
Example 3. 

x y=logx 

2 0.30103 

2.5 0.39794 

3 0.47712 

3.5 0.54407 

4 0.60206 

4.5 0.6532125 

5 0.69897 

 

 ;nE f x  = 0.000208334839 

 
Example 4. [6] 

x y=sinx 

0 0 

π/4 0.70711 

π/2 1.0 
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 ;nE f x  = 0.02392 

 
Example 5. 

x y=sinx 

0 0 

π/8 0.3827 

π/6 0.5 

π/4 0.70711 

π/2 1.0 

 

 ;nE f x  = 0.000005927 

 

Example 6. 

x y=sinx 

0 0 

π/12 0.25882 

π/10 0.30902 

π/8 0.3827 

π/6 0.5 

π/4 0.70711 

π/2 1.0 

 

 ;nE f x  = 0.000000003553058352 

 
Example 7. 

x 
2xy e  

0 1 

0.5 2.718 

1 7.389 

 

 ;nE f x  = 0.413784 
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Example 8. 

x 
2xy e  

0 1 

0.5 2.718 

1 7.389 

1.2 11.0232 

2 54.5982 

 

 ;nE f x  = 0.397474896 

 
Example 9. 

x 
2xy e  

0 1 

0.5 2.718 

1 7.389 

1.2 11.0232 

2 54.5982 

2.5 148.4132 

3 403.4288 

 

 ;nE f x  = 1.158002602 

 
Example 10.  

x y=sinx 

0.1 0.09983 

0.2 0.19867 

 

 ;nE f x  = 0.00025 

 

COMPARISION OF RESULTS 

 

 

From above examples we see that when we increase the functions then error decreases 

for all type of functions i.e. logarithmic functions, exponential functions, trigonometric 

functions. 
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CONCLUSION 

 

 

In this paper, accordingly to the analysis the performance of errors on different types 

of function is presented. Experimental results show that when functions will increase then 

error will decrease for all type of functions i.e. logarithmic functions, exponential functions, 

trigonometric function 
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