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Abstract. Solutions of nonlinear models are of great importance and their significance 

has increased a lot. In this article, analytical solutions of nonlinear fluid model representing 
MHD flow over a nonlinear stretching sheet are obtained via Exp-function method. 
Computational work and succeeding results re-confirm the efficiency of anticipated 
algorithm. It is experimental that recommended scheme is highly trustworthy and may be 
extended to other nonlinear models represented in the form of highly nonlinear differential 
equations.  
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1. INTRODUCTION     
 
 

Flow between sucking or injecting porous domains is a very chief phenomena. Its 
biological and industrial applications have paying attention of many scientists towards its 
learning. Since the pioneering work by Berman [1], researchers from all over the world not 
only showed their attention in such types of flows but they carried Berman’s work to new 
limits and now we have better understanding of these flows. Further investigation and 
developments are still welcomed and therefore people are still working on these types of 
problems. Flow between expanding and contracting vessels on the one hand is a very essential 
transportation process in many industries while on the other hand it is also a potent 
simplification to the blood flow model and is responsible for inter-body transportation of food 
and other minerals. To simulate the flow of blood mathematically many fluid models have 
been used however [2, 3] showed that the most viable model for this purpose is the Casson 
fluid model as its rheological properties are very similar to blood and it depicts the shear 
thinning behavior of blood which cannot be described correctly by Newtonian fluids. Most of 
the studies done earlier [4-8] refer to the flow of a non-conducting fluid in expanding 
contracting domains; however, blood and many other fluids in industries contain metallic 
impurities and are electrically conducting so to understand the flow behavior we need to 
consider this aspect as well. These conducting fluids under the influence of magnetic field not 
only behave differently but there is also a visible change in pressure distribution across the 
flow [9] studied effects of magnetic field on flow of electrically conducting Newtonian fluid 
flowing between expanding and contracting walls. Motivated by the work mentioned above 
we present this article to discuss the solitary wave behavior of MHD flow over a nonlinear 
Stretching sheet. This work can be help in making of better blood flow simulating software; 
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which, now a days are used not only in different cardiac tests but also in fabrication of 
synthetic organs. Many researchers [10-24] adopted the discussed algorithm for finding exact 
solutions of nonlinear problems. Scientists extend proposed scheme to verdict solitary wave 
solution of boundary value problems. Analytical solutions of generalized evolution equation 
are obtained   by using mentioned technique and extended for highly nonlinear problems. In 
his article Ebaid [25] used an approach to calculate values of c, d, p and q by different way 
associating highly linear and nonlinear terms.             

 The elementary inspiration is that we used Exp-function method to deliberated 
solitary wave performance of the MHD Flow over a nonlinear stretching sheet. The proposed 
method is very well-matched, highly effective, and awfully consistent for evolution equations   
and can be prolonged to nonlinear models arising in many fields like engineering, plasma 
physics and fluid mechanics.   

 
 

2. FORMULATION OF PROBLEM   
 
 

Consider fluid flow in a plane with flow along x-direction and deformation 
perpendicular to flow direction. Magnetic field effects are incorporated and path of magnetic 
field is along y-direction .The field equations for fluid flow are  
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In above u and v	are velocity components along x and y axis’s respectively and  ,   

and  are the kinematics viscosity, fluid density and electrical conductivity respectively.	The 
external electrical field and polarization effects are not considered 
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The subjected boundary conditions for nonlinear flow are 
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Using similar transformation  
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Applying transformation on field equations and boundary conditions we obtain  
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                      ,0,10,00  fff                     (7) 
 

In equation (6) 
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3. EXP-FUNCTION TECHNIQUE  
 
 

Nonlinear ordinary differential equation in the general form is 
  

    0,,,,  F                                           (9) 
 
Where prime represents differentiation w.r.t  

Permitting to Exp-function method, we observed that the solitary wave solutions can 
be articulated in the subsequent procedure  
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In last equation c, d and p, q are the positive integers and need to be calculated, ai and 

bj are constants. Equation (10) can be expressed in the subsequent corresponding way  
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The outcome of equivalent formulation is an imperative and vital analytic solutions of 

the governing differential equation. Calculating values by using [25], finally results in  
 

dqcp  ,                                                                                                               (12) 
 
 
3.1. SOLUTION PROCEDURE  
 
 
The modeled ordinary differential equation is of the following form 
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Where the prime symbolizes the differentiation w.r.t . The solution of the equation (13) can 
be conveyed in the procedure (11). We will elucidate that the final solution does not 
powerfully rest on the optimal of values of c and d.  
 
Case. I  For easiness, we fixed 1 cp  and 1 dq  equation (11) shrinks to  
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Replacing value from (16) into equation (13), we get 
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Where  4

1 0 1A b b be e
 

   and kc  are the constants acquired by Maple 18. Associating 

the coefficients of eiη equal to zero, we gain     
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The solution sets satisfying the equation (13) are given below 
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We get the subsequent generalized solitary solution ( )f   of equation (13) 
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Figure 1. Soliton solutions of equation (13) with 1 0 1 11, .1, 1, 2, 1.5a b b b M     . 
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Case. II   If p = c = 2 and q = d = 1 then trial solution, equation (11) reduces to  
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Proceeding as before, we have following solution sets satisfy the given equation (13) 
 

1st Solution set 
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We acquire the generalized solitary wave solution of equation (13)  
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Figure 2. Soliton solutions of equation (13) with 0 2 1 11, 1, 1, 2, 1.5a b b b M     . 

 
2nd solution set  
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Thus obtain the generalized solitary wave solution of equation (13)  
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Figure 3. Soliton solutions of equation (13) with 0 2 1 01, 2, 1, 1, 1.5a b b b M     . 

 
3rd solution set 
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Therefore we observed the solitary wave solution of equation (13)  
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Figure 4. Soliton solutions of equation (13) with 1 1 1 01, 1, 1, .1, 1.5a b b b M      . 

 
4th solution set 
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From now we find the solitary wave solution of equation (13)  
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Figure 5. Soliton solutions of equation (13) with 2 0 2 1 11, .1, .1, 1, 2, 1.5a b b b b M      . 

 
By computational work and graphical analysis it is observed that for different 

selections of c, p, d and q results in various types of soliton solutions. So clearly it is 
illustrated that final solution does not strongly to be dependent on these parameters. 

 
 

4. CONCLUSION 
 
 

In this work, solitary wave solutions for nonlinear fluid model namely MHD flow over 
a nonlinear stretching sheet are obtained successfully by making use of Exp-function method. 
The solutions obtained are analytical in nature and are of great significance. Behavior of the 
solutions obtained using the considered algorithm are discussed with the help of graphs. One 
important finding is that by using Exp-fucntion method, we can conveniently obtain solitary 
wave solutions of different nonlinear problems whose solutions cannot be obtained by other 
classical techniques.  
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