THE EVOLUTE SURFACE OF A SURFACE WHICH PARAMETER LINES ARE LINES OF CURVATURE IN E ${ }^{4}$

SIDIKA TUL ${ }^{1}$, AYHAN SARIOĞLUGİL ${ }^{1}$

Manuscript received: 27.12.2016; Accepted paper: 25.03.2017;
Published online: 30.06.2017.

Abstract

In this study it is searched that how the evolute surface of a surface, which is given parameter lines are lines of curvature in \mathbb{E}^{4} is constructed. Then, the Gaussian curvature and the mean curvature of the evolute surface are investigated and some important results are given. Finally, we present some examples to confirm our claim.

Keywords: Normal transport surface, evolute surface, offset functions.

1. INTRODUCTION

The normal transport surface \bar{M} of M are the generalization of offset surfaces to 4dimensional Euclidean space E^{4} [3]. Observe that, evolute surfaces in E^{4} are the special type normal transport surfaces [1, 2, 4, 5]. The paper organized as follows. In section 2, we briefly considered basic concepts of surfaces in Euclidean spaces. In section 3, we consider the evolute surface of a surface which parameter lines are lines of curvature in E^{4} and give some important propositions and corollaries. Further we give some examples of evolute surfaces in E^{4}.

2. PRELIMINARIES

Let M be a local surface in E^{4} given with the regular patch $X(u, v):(u, v) \in D \subset \mathbb{R}^{2}$. The tangent space $T_{M}(P)$ to M at an arbitrary point $P=X(u, v)$ of M is spanned by $\left\{X_{u}, X_{v}\right\}$. Further, X_{u} and X_{v} are linearly independent tangential vectors of mapping X at an arbitrary point P and

$$
T_{M}(P) \cong \mathbb{R}^{2} .
$$

In particular, this leads up to decomposition

$$
E^{4}=T_{M}(P) \oplus T_{M}^{\perp}(P)
$$

with the two dimensional normal space

[^0]$$
T_{M}^{\perp}(P)=\left\{N_{\sigma}(P) \in E^{4} \mid\left\langle N_{\sigma}(P), X_{u}(P)\right\rangle=\left\langle N_{\sigma}(P), X_{v}(P)\right\rangle=0, \sigma=1,2\right\} .
$$

Definition 1. Let $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ be a surface and the normal space of M is denoted by $T_{M}^{\perp}(P)=\left\{N_{\sigma}(P) \in E^{4} \mid\left\langle N_{\sigma}(P), X_{u}(P)\right\rangle=\left\langle N_{\sigma}(P), X_{v}(P)\right\rangle=0, \sigma=1,2\right\}$.

If along the whole surface $\left\langle N_{\sigma}(P), N_{v}(P)\right\rangle=\delta_{\sigma v}:=\left\{\begin{array}{ll}1, & \text { if } \sigma=v \\ 0 & \text { if } \sigma \neq v\end{array}\right.$ is satisfied, the normal space of M is defined by orthonormal normal space of M (or ONF) [3].

Definition 2. The first fundamental form of $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ is defined by

$$
I(X)=\left(g_{i j}\right)_{i, j=1,2}, g_{i j}=\left\langle X_{u^{i}}, X_{u^{j}}\right\rangle
$$

setting $u^{1}:=u$ and $u^{2}:=v$ [3].
Definition 3. The second fundamental form of $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ w.r.t. any unit normal vector $N_{\sigma}, \sigma=1,2$ is defined by

$$
I I_{N_{\sigma}}(X)=\left(L_{\sigma, i j}\right)_{i, j=1,2}, L_{\sigma, i j}:=\left\langle X_{u^{i}}, N_{\sigma, u^{i}}\right\rangle=-\left\langle X_{u^{i} u^{j}}, N_{\sigma}\right\rangle
$$

setting $u^{1}:=u$ and $u^{2}:=v$ [3].
Note that, if the parameter lines of M are lines of curvature, $g_{12}=L_{\sigma, 12}=0$.
Definition 4. Let the parameter lines of the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ be lines of curvature. Then, the principal curvatures of M are defined as $k_{i}^{\sigma}=\frac{L_{\sigma, i i}}{g_{i i}}$ [6].

Definition 5. The Gaussian curvature of the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ is defined as [3]:

$$
\begin{equation*}
K:=\sum_{\sigma=1}^{2} K_{\sigma}, K_{\sigma}:=\frac{L_{\sigma, 11} L_{\sigma, 22}-L_{\sigma, 12}^{2}}{g_{11} g_{22}-g_{12}^{2}} \tag{1}
\end{equation*}
$$

Definition 6. The mean curvature vector of the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ is defined as [3]:

$$
\begin{equation*}
\vec{H}:=\sum_{\sigma=1}^{2} H_{\sigma} N_{\sigma}, H_{\sigma}:=\frac{L_{\sigma, 11} g_{22}-2 L_{\sigma, 12} g_{12}+L_{\sigma, 22} g_{11}}{2\left(g_{11} g_{22}-g_{12}^{2}\right)} \tag{2}
\end{equation*}
$$

Definition 7. The Gaussian torsion of the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ is defined as [3]:

$$
\begin{equation*}
K_{N}=\frac{1}{W^{3}}\left[g_{11}\left(L_{1,12} L_{2,22}-L_{2,12} L_{1,22}\right)-g_{12}\left(L_{1,11} L_{1,22}-L_{2,11} L_{1,22}\right)+g_{22}\left(L_{1,11} L_{2,12}-L_{2,11} L_{1,12}\right)\right] \tag{3}
\end{equation*}
$$

Definition 7. Let the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ with an ONF $N=\left\{N_{1}, N_{2}\right\}$ be given. The torsion coefficients of ONF N are defined as [3]:

$$
T_{\sigma, i}^{v}:=\left\langle N_{\sigma, u^{i}}, N_{\nu}\right\rangle ; i, \sigma, v=1,2
$$

Definition 8. (Weingarten equations) Let the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ with an ONF $N=\left\{N_{1}, N_{2}\right\}$ is given. Then there hold [3]:

$$
N_{\sigma, u^{i}}=-\sum_{j, k=1}^{2} L_{\sigma, i j} g^{j k} X_{u^{k}}+\sum_{\vartheta=1}^{2} T_{\sigma, i}^{\vartheta} N_{\vartheta} .
$$

Furthermore, if the parameter lines of M are lines of curvature, Weingarten equations is given as following:

$$
\begin{cases}N_{1, u}=k_{1}^{1} X_{u} & N_{1, v}=k_{2}^{1} X_{v} \tag{4}\\ N_{2, u}=k_{1}^{2} X_{u} & N_{2, v}=k_{2}^{2} X_{v}\end{cases}
$$

Definition 9. The curvature tensor $S_{\sigma, i j}^{\omega}$ of the normal bundle of the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ is defined as

$$
\begin{aligned}
S_{\sigma, i j}^{\omega} & :=\partial_{u^{i}} T_{\sigma, i}^{\omega}-\partial_{u^{i}} T_{\sigma, j}^{\omega}+\sum_{\vartheta=1}^{2}\left(T_{\sigma, i}^{\vartheta} T_{\vartheta, j}^{\omega}-T_{\sigma, j}^{\vartheta} T_{\theta, i}^{\omega}\right) \\
& =\sum_{m, n=1}^{2}\left(L_{\sigma, i m} L_{\omega, j n}-L_{\sigma, j m} L_{\sigma, i n}\right) g^{m n}
\end{aligned}
$$

for $i, j, \sigma, \omega=1,2[3]$.
Definition 10. Let the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ is given. Then the scalar curvature of its normal bundle is defined as

$$
S:=\frac{1}{W} S_{1,12}^{2}
$$

where W is the area element of M [3].
Definition 11. Let the surface $M=\left\{X: D \subset \mathbb{R}^{2} \rightarrow E^{4}\right\}$ with with an ONF $N=\left\{N_{1}, N_{2}\right\}$ be given. The normal transport surface of M is defined as

$$
\begin{equation*}
\bar{M}:=\left\{R(u, v) \mid R(u, v)=X(u, v)+f(u, v) N_{1}(u, v)+g(u, v) N_{2}(u, v)\right\} \tag{5}
\end{equation*}
$$

where $f, g: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ are offset functions [3].
The mapping R is then called an evolute surface to X if the tangential planes of R agree with the normal planes of X at corresponding points.

Proposition 1. Let $f, g \neq 0$. If R is an evolute surface to X, then X has flat normal bundle, i.e. it holds $S \equiv 0[3]$.

Theorem 1. If asurface $\bar{M} \subset E^{4}$ is the evolute for some surface M, then the Levi-Civita connection of \bar{M} is locally flat [2].

Theorem 2. Minimal surfaces have no evolutes [2].

3. EVOLUTE SURFACES IN E ${ }^{4}$

We would like to point out that, we will assume that the parameter lines of the surface M are lines of curvature along the whole study.

Proposition 2. Let $M \subset E^{4}$ be a surface and the parameter lines of M be lines of curvature. Then, the normal transport surface \bar{M} of M is the evolute surface of M if and only if

$$
\left\{\begin{array}{l}
f=\frac{k_{1}^{2}-k_{2}^{2}}{k_{1}^{1} k_{2}^{2}-k_{2}^{1} k_{1}^{2}} \\
g=\frac{k_{2}^{1}-k_{1}^{1}}{k_{1}^{1} k_{2}^{2}-k_{2}^{1} k_{1}^{2}}
\end{array}\right.
$$

where f and g are continuous offset functions and k_{i}^{j} are principal curvatures of M, $i, j=1,2$.

Proof. From (4) and (5), we have

$$
\left\{\begin{array}{l}
R_{u}=\left(1+f k_{1}^{1}+g k_{1}^{2}\right) X_{u}+f_{u} N_{1}+g_{u} N_{2} \tag{6}\\
R_{v}=\left(1+f k_{2}^{1}+g k_{2}^{2}\right) X_{v}+f_{v} N_{1}+g_{v} N_{2}
\end{array}\right.
$$

Since \bar{M} is the evolute surface of M, the tangent planes of M and \bar{M} are orthogonal to each other at the corresponding points of the surfaces, i.e., $R_{u} \perp X_{u}, R_{u} \perp X_{v}, R_{v} \perp X_{u}$ and $R_{v} \perp X_{v}$. From hence, $R_{u}^{\mathrm{T}}=0$ and $R_{v}^{\mathrm{T}}=0$. Namely,

$$
\left\{\begin{array}{l}
k_{1}^{1} f+k_{1}^{2} g=-1 \\
k_{2}^{1} f+k_{2}^{2} g=-1
\end{array}\right.
$$

If we solve this system of linear equations using Cramer's rule, we have $\left\{\begin{array}{l}f=\frac{k_{1}^{2}-k_{2}^{2}}{k_{1}^{1} k_{2}^{2}-k_{2}^{1} k_{1}^{2}} \\ g=\frac{k_{2}^{1}-k_{1}^{1}}{k_{1}^{1} k_{2}^{2}-k_{2}^{1} k_{1}^{2}}\end{array}\right.$ where $\Delta=\left|\begin{array}{ll}k_{1}^{1} & k_{1}^{2} \\ k_{2}^{1} & k_{2}^{2}\end{array}\right| \neq 0$.
Proposition 3. Let \bar{M} be the normal transport surface of M. Then in view of the regularity asummption of \bar{M},there hold necessarly

$$
\left\{\begin{array}{l}
f_{u} k_{2}^{1}+g_{u} k_{2}^{2}=0 \\
f_{v} k_{1}^{1}+g_{v} k_{1}^{2}=0
\end{array} .\right.
$$

Proof. Using (6) we obtain

$$
\left\{\begin{array}{l}
R_{u v}=\left(f_{u} k_{2}^{1}+g_{u} k_{2}^{2}\right) X_{v}+f_{u v} N_{1}+g_{u v} N_{2} \tag{7}\\
R_{v u}=\left(f_{v} k_{1}^{1}+g_{v} k_{1}^{2}\right) X_{u}+f_{v u} N_{1}+g_{v u} N_{2}
\end{array}\right.
$$

Since f and g are continuous functions $f_{u v}=f_{v u}$ and $g_{u v}=g_{v u}$. Also, taking into consideration the regularity assumption of \bar{M}, we get

$$
\begin{equation*}
\left(f_{u} k_{2}^{1}+g_{u} k_{2}^{2}\right) X_{v}=\left(f_{v} k_{1}^{1}+g_{v} k_{1}^{2}\right) X_{u} \tag{8}
\end{equation*}
$$

Taking the dot product of (8) with X_{v} and X_{u}, respectively, we have

$$
\left\{\begin{array}{l}
\left(f_{u} k_{2}^{1}+g_{u} k_{2}^{2}\right) g_{22}=0 \\
\left(f_{v} k_{1}^{1}+g_{v} k_{1}^{2}\right) g_{11}=0
\end{array} .\right.
$$

It is known that both of g_{11} and g_{22} can not be vanish. So, the proof is completed.
Proposition 4. Let \bar{M} be the evolute surface of M and denote by \bar{K} the Gaussian curvature of \bar{M}. Then it holds $\bar{K}=0$.

Proof. From (6) the coefficients of the first fundamental form of \bar{M} are

$$
\left\{\begin{array}{c}
\bar{g}_{11}=f_{u}^{2}+g_{u}^{2} \tag{9}\\
\bar{g}_{12}=f_{u} f_{v}+g_{u} g_{v} \\
\bar{g}_{22}=f_{v}^{2}+g_{v}^{2}
\end{array}\right.
$$

where \langle,$\rangle is the standart scalar product in E^{4}$.
Let us consider an orthonormal normal frame (ONF) of \bar{M}. Since \bar{M} is the evolute surface of M

$$
\chi(M) \perp \chi(\bar{M}) \Rightarrow \chi(M) \| \chi^{\perp}(\bar{M})
$$

Because of this reason, we can choose an ONF $\bar{N}=\left\{\bar{N}_{1}, \bar{N}_{2}\right\}$ of \bar{M}, such that

$$
\left\{\begin{array}{l}
\bar{N}_{1}=\frac{1}{\sqrt{g_{11}}} X_{u} \tag{10}\\
\bar{N}_{2}=\frac{1}{\sqrt{g_{22}}} X_{v}
\end{array}\right.
$$

Hence, using (7) and (10) we can calculate the coefficients of the second fundamental form of \bar{M} as following:

$$
\left\{\begin{array}{c}
\bar{L}_{1,11}=-\sqrt{g_{11}}\left(f_{u} k_{1}^{1}+g_{u} k_{1}^{2}\right) \tag{11}\\
\bar{L}_{1,12}=\bar{L}_{1,22}=\bar{L}_{2,11}=\bar{L}_{2,12}=0 \\
\bar{L}_{2,22}=-\sqrt{g_{22}}\left(f_{v} k_{2}^{1}+g_{v} k_{2}^{2}\right)
\end{array}\right.
$$

Then, from (1) and using (9) and (11) the Gaussian curvatures of \bar{M} w.r.t. the unit normal vectors $\bar{N}_{\sigma}, \sigma=1,2$ can be obtained as follows: $\bar{K}_{1}=\bar{K}_{2}=0$.

From herethe Gaussian curvature of \bar{M} is $\bar{K}=\bar{K}_{1}+\bar{K}_{2}=0$.
The easy consequences of Proposition 4 are the followings:
Corollary 1. The evolute surface \bar{M} of M is a developable surface.
Corollary 2. Let \bar{M} be the evolute surface of M and denote by $\bar{\omega}$ the area element of \bar{M}. Then it holds

$$
\bar{\omega}=\left|f_{u} g_{v}-g_{u} f_{v}\right|
$$

Corollary 3. Let \bar{M} be the evolute surface of M. Then the parameter lines of \bar{M} are lines of curvature if and only if

$$
f_{u} f_{v}+g_{u} g_{v}=0
$$

Corollary 4. Let \bar{M} be the evolute surface of M and denote by $\bar{k}_{i}^{j}, i, j=1,2$, the principal curvatures of \bar{M}. Then it holds

$$
\left\{\begin{array}{cc}
\bar{k}_{1}^{1}=-\frac{\sqrt{g_{11}}\left(f_{u} k_{1}^{1}+g_{u} k_{1}^{2}\right)}{f_{u}^{2}+g_{u}^{2}} & \bar{k}_{2}^{1}=0 \\
\bar{k}_{1}^{2}=0 & \bar{k}_{2}^{2}=-\frac{\sqrt{g_{22}}\left(f_{v} k_{2}^{1}+g_{v} k_{2}^{2}\right)}{f_{v}^{2}+g_{v}^{2}}
\end{array}\right.
$$

Proposition 5. Let \bar{M} be the evolute surface of M and denote by $\overline{\vec{H}}$ the mean curvature vector of \bar{M}. Then it holds

$$
\overrightarrow{\vec{H}}=-\frac{\sqrt{g_{11}}\left(f_{u} k_{1}^{1}+g_{u} k_{1}^{2}\right)\left(f_{v}^{2}+g_{v}^{2}\right) N_{1}+\sqrt{g_{22}}\left(f_{v} k_{2}^{1}+g_{v} k_{2}^{2}\right)\left(f_{u}^{2}+g_{u}^{2}\right) N_{2}}{2\left(f_{u} g_{v}-g_{u} f_{v}\right)^{2}}
$$

Proof. From (2) the mean curvatures of \bar{M} w.r.t. the unit normal vectors $N_{\sigma}, \sigma=1,2$, can be obtained as the following:

$$
\bar{H}_{1}=-\frac{\sqrt{g_{11}}\left(f_{u} k_{1}^{1}+g_{u} k_{1}^{2}\right)\left(f_{v}^{2}+g_{v}^{2}\right)}{2\left(f_{u} g_{v}-g_{u} f_{v}\right)^{2}}
$$

and

$$
\bar{H}_{2}=-\frac{\sqrt{g_{22}}\left(f_{v} k_{2}^{1}+g_{v} k_{2}^{2}\right)\left(f_{u}^{2}+g_{u}^{2}\right)}{2\left(f_{u} g_{v}-g_{u} f_{v}\right)^{2}}
$$

Then using (9) and (11) the mean curvature vector $\overline{\vec{H}}$ of \bar{M} is obtained.

Corollary 5. The evolute surface \bar{M} of M is a minimal surface if and only if

$$
g_{11}\left(f_{u} k_{1}^{1}+g_{u} k_{1}^{2}\right)^{2}\left(f_{v}^{2}+g_{v}^{2}\right)^{2}+g_{22}\left(f_{v} k_{2}^{1}+g_{v} k_{2}^{2}\right)^{2}\left(f_{u}^{2}+g_{u}^{2}\right)^{2}=0
$$

Proposition 6. Let \bar{M} be the evolute surface of M and denote by the Gaussian torsion of \bar{M}. Then it holds $\bar{K}_{N}=0$.

Proof. From (3) and using (9) and (11) we get

$$
\bar{K}_{N}=0 .\left(-\sqrt{g_{22}}\left(f_{v} k_{2}^{1}+g_{v} k_{2}^{2}\right)-0\right)+0 \cdot\left(-\sqrt{g_{11}}\left(f_{u} k_{1}^{1}+g_{u} k_{2}^{1}\right)-0\right)=0 .
$$

Corollary 6. The evolute surface \bar{M} of M has flat normal bundle, i.e. $R_{u}^{\perp}=0$.
Example 1. Let

$$
M \ldots X(u, v)=\left(u, v, u^{2}, v^{2}\right)
$$

be a surface in E^{4}.
We can give the first and second partial derivatives of M as follows:

$$
\begin{aligned}
& X_{u}(u, v)=(1,0,2 u, 0) \\
& X_{v}(u, v)=(0,1,0,2 v) \\
& X_{u u}(u, v)=(0,0,2,0) \\
& X_{u v}(u, v)=(0,0,2,0) \\
& X_{v v}(u, v)=(0,0,0,2)
\end{aligned}
$$

and the orthonormal normal space of M is spanned by

$$
\begin{aligned}
& N_{1}(u, v)=\frac{1}{\sqrt{1+4 u^{2}}}(-2 u, 0,1,0) \\
& N_{2}(u, v)=\frac{1}{\sqrt{1+4 v^{2}}}(0,-2 v, 0,1)
\end{aligned}
$$

Hence, the coefficients of the first fundamental form of the surface are

$$
\left\{\begin{array}{c}
g_{11}=1+4 u^{2} \\
g_{12}=0 \\
g_{22}=1+4 v^{2}
\end{array} .\right.
$$

Similarly, the coefficients of the second fundamental form of the surface are

$$
\left\{\begin{array}{c}
L_{1,11}=-\frac{2}{\sqrt{1+4 u^{2}}} \\
L_{1,12}=L_{1,22}=L_{2,11}=L_{2,12}=0 . \\
L_{2,22}=-\frac{2}{\sqrt{1+4 v^{2}}}
\end{array}\right.
$$

From here, we can say that the parameter lines of M are lines of curvature. In addition that M is not a minimal surface and has flat normal bundle. Also, the principal curvatures of M are

$$
\left\{\begin{array}{c}
k_{1}^{1}=-\frac{2}{\left(1+4 u^{2}\right)^{3 / 2}} \\
k_{2}^{1}=k_{1}^{2}=0 \\
k_{2}^{2}=-\frac{2}{\left(1+4 v^{2}\right)^{3 / 2}}
\end{array} .\right.
$$

Thus, offset functions can be calculated as follows:

$$
f=\frac{\left(1+4 u^{2}\right)^{3 / 2}}{2} ; g=\frac{\left(1+4 v^{2}\right)^{3 / 2}}{2}
$$

where $\Delta=\left|\begin{array}{ll}k_{1}^{1} & k_{1}^{2} \\ k_{2}^{1} & k_{2}^{2}\end{array}\right| \neq 0$. After all, the evolute surface of M can be obtained as

Figure 1. The surface M and its evolute \bar{M}.
Example 2. Let $M \ldots X(u, v)=\left(u, v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ be a surface in E^{4}. We can give the first and second partial derivatives of M as follows:

$$
\begin{gathered}
X_{u}(u, v)=(1,0,2 u, 2 u) \\
X_{v}(u, v)=(0,1,-2 v, 2 v) \\
X_{u u}(u, v)=(0,0,2,2) \\
X_{u v}(u, v)=(0,0,0,0) \\
X_{v v}(u, v)=(0,0,-2,2)
\end{gathered}
$$

and the orthonormal normal space of M is spanned by

$$
\begin{aligned}
& N_{1}(u, v)=\frac{2 \sqrt{2}|u|}{\sqrt{1+8 u^{2}}}\left(1,0,-\frac{1}{4 u},-\frac{1}{4 u}\right) \\
& N_{2}(u, v)=\frac{2 \sqrt{2}|v|}{\sqrt{1+8 v^{2}}}\left(0,1, \frac{1}{4 v},-\frac{1}{4 v}\right)
\end{aligned}
$$

Hence, the coefficients of the first fundamental form of the surface are

$$
\left\{\begin{array}{c}
g_{11}=1+8 u^{2} \\
g_{12}=0 \\
g_{22}=1+8 v^{2}
\end{array}\right.
$$

Similarly, the coefficients of the second fundamental form of the surface are

$$
\left\{\begin{array}{c}
L_{1,11}= \pm \frac{2 \sqrt{2}}{\sqrt{1+8 u^{2}}} \\
L_{1,12}=L_{1,22}=L_{2,11}=L_{2,12}=0 \\
L_{2,22}= \pm \frac{2 \sqrt{2}}{\sqrt{1+8 v^{2}}}
\end{array}\right.
$$

From here, we can say that the parameter lines of M are lines of curvature. In addition that M is not a minimal surface and has flat normal bundle.

Also, the principal curvatures of M are

$$
\left\{\begin{array}{c}
k_{1}^{1}=\mp \frac{2 \sqrt{2}}{\left(1+8 u^{2}\right)^{3 / 2}} \\
k_{2}^{1}=k_{1}^{2}=0 \\
k_{2}^{2}=\mp \frac{2 \sqrt{2}}{\left(1+8 v^{2}\right)^{3 / 2}}
\end{array} .\right.
$$

Thus, offset functions can be calculated as follows:

$$
f= \pm \frac{\left(1+8 u^{2}\right)^{3 / 2}}{2 \sqrt{2}} ; g= \pm \frac{\left(1+8 v^{2}\right)^{3 / 2}}{2 \sqrt{2}}
$$

where $\Delta=\left|\begin{array}{ll}k_{1}^{1} & k_{1}^{2} \\ k_{2}^{1} & k_{2}^{2}\end{array}\right| \neq 0$. After all, the evolute surface of M can be obtained as

$$
\bar{M} \ldots R(u, v)=\left(-8 u^{3},-8 v^{3}, 3 u^{2}-3 v^{2}, \frac{1}{2}+3 u^{2}+3 v^{2}\right) .
$$

Figure 2. The surface M and its evolute \bar{M}.

REFERENCES

[1] Arslan, K, Bulca, B, Bayram, B. K., Öztürk, G., Dif. Geo. Dyn. Sys., 17, 13, 2015.
[2] Cheshkova, M. A., Mathematical Notes, 70, 870, 2001.
[3] Fröhlich, S., Surfaces in Euclidean Spaces, www.scribd.com/doc, 2013.
[4] Krivonosov, L. N., Amer. Math. Soc. Transl., 92, 139, 1970.
[5] Maekawa, T., Computer Aided Design, 31, 165, 1999.
[6] Şemin, F., Diferansiyel Geometri II, İstanbul, 1987.

[^0]: ${ }^{1}$ Ondokuz Mayıs University, Faculty of Science and Arts, Department of Mathematics, 55139, Atakum, Samsun, Turkey. E-mail: tul_sidiqa@hotmail.com; sarioglugil@gmail.com.

