ORIGINAL PAPER THE EVOLUTE SURFACE OF A SURFACE WHICH PARAMETER LINES ARE LINES OF CURVATURE IN E⁴

SIDIKA TUL¹, AYHAN SARIOĞLUGİL¹

Manuscript received: 27.12.2016; Accepted paper: 25.03.2017; Published online: 30.06.2017.

Abstract. In this study it is searched that how the evolute surface of a surface, which is given parameter lines are lines of curvature in \mathbb{E}^4 is constructed. Then, the Gaussian curvature and the mean curvature of the evolute surface are investigated and some important results are given. Finally, we present some examples to confirm our claim.

Keywords: Normal transport surface, evolute surface, offset functions.

1. INTRODUCTION

The normal transport surface \overline{M} of M are the generalization of offset surfaces to 4dimensional Euclidean space E^4 [3]. Observe that, evolute surfaces in E^4 are the special type normal transport surfaces [1, 2, 4, 5]. The paper organized as follows. In section 2, we briefly considered basic concepts of surfaces in Euclidean spaces. In section 3, we consider the evolute surface of a surface which parameter lines are lines of curvature in E^4 and give some important propositions and corollaries. Further we give some examples of evolute surfaces in E^4 .

2. PRELIMINARIES

Let *M* be a local surface in E^4 given with the regular patch $X(u,v):(u,v) \in D \subset \mathbb{R}^2$. The tangent space $T_M(P)$ to *M* at an arbitrary point P = X(u,v) of *M* is spanned by $\{X_u, X_v\}$. Further, X_u and X_v are linearly independent tangential vectors of mapping *X* at an arbitrary point *P* and

$$T_M(P) \cong \mathbb{R}^2$$

In particular, this leads up to decomposition

$$E^4 = T_M(P) \oplus T_M^{\perp}(P)$$

with the two dimensional normal space

¹ Ondokuz Mayıs University, Faculty of Science and Arts, Department of Mathematics, 55139, Atakum, Samsun, Turkey. E-mail: <u>tul_sidiqa@hotmail.com</u>; <u>sarioglugil@gmail.com</u>.

$$T_{M}^{\perp}(P) = \left\{ N_{\sigma}(P) \in E^{4} \middle| \left\langle N_{\sigma}(P), X_{u}(P) \right\rangle = \left\langle N_{\sigma}(P), X_{v}(P) \right\rangle = 0, \sigma = 1, 2 \right\}$$

Definition 1. Let $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ be a surface and the normal space of M is denoted by $T_M^{\perp}(P) = \{N_{\sigma}(P) \in E^4 | \langle N_{\sigma}(P), X_u(P) \rangle = \langle N_{\sigma}(P), X_v(P) \rangle = 0, \sigma = 1, 2 \}.$

If along the whole surface $\langle N_{\sigma}(P), N_{\nu}(P) \rangle = \delta_{\sigma\nu} := \begin{cases} 1, & \text{if } \sigma = \nu \\ 0, & \text{if } \sigma \neq \nu \end{cases}$ is satisfied, the normal space of *M* is defined by orthonormal normal space of *M* (or *ONF*) [3].

Definition 2. The *first fundamental form* of $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ is defined by

$$I(X) = \left(g_{ij}\right)_{i,j=1,2}, g_{ij} = \left\langle X_{u^{i}}, X_{u^{j}}\right\rangle$$

setting $u^1 := u$ and $u^2 := v$ [3].

Definition 3. The second fundamental form of $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ w.r.t. any unit normal vector $N_{\sigma}, \sigma = 1, 2$ is defined by

$$II_{N_{\sigma}}(X) = \left(L_{\sigma,ij}\right)_{i,j=1,2}, L_{\sigma,ij} \coloneqq \left\langle X_{u^{i}}, N_{\sigma,u^{j}}\right\rangle = -\left\langle X_{u^{i}u^{j}}, N_{\sigma}\right\rangle$$

setting $u^1 := u$ and $u^2 := v$ [3].

Note that, if the parameter lines of M are lines of curvature, $g_{12} = L_{\sigma,12} = 0$.

Definition 4. Let the parameter lines of the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ be lines of curvature. Then, the principal curvatures of M are defined as $k_i^{\sigma} = \frac{L_{\sigma,ii}}{g_{ii}}$ [6].

Definition 5. The *Gaussian curvature* of the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ is defined as [3]:

$$K := \sum_{\sigma=1}^{2} K_{\sigma}, K_{\sigma} := \frac{L_{\sigma,11} L_{\sigma,22} - L_{\sigma,12}^{2}}{g_{11} g_{22} - g_{12}^{2}}$$
(1)

Definition 6. The *mean curvature vector* of the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ is defined as [3]:

$$\overrightarrow{H} := \sum_{\sigma=1}^{2} H_{\sigma} N_{\sigma}, H_{\sigma} := \frac{L_{\sigma,11} g_{22} - 2L_{\sigma,12} g_{12} + L_{\sigma,22} g_{11}}{2 \left(g_{11} g_{22} - g_{12}^{2} \right)}.$$
(2)

Definition 7. The *Gaussian torsion* of the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ is defined as [3]:

$$K_{N} = \frac{1}{W^{3}} \left[g_{11} \left(L_{1,12} L_{2,22} - L_{2,12} L_{1,22} \right) - g_{12} \left(L_{1,11} L_{1,22} - L_{2,11} L_{1,22} \right) + g_{22} \left(L_{1,11} L_{2,12} - L_{2,11} L_{1,12} \right) \right]$$
(3)

Definition 7. Let the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ with an *ONF* $N = \{N_1, N_2\}$ be given. The torsion coefficients of *ONF* N are defined as [3]:

$$T_{\sigma,i}^{\upsilon} \coloneqq \left\langle N_{\sigma,u^{i}}, N_{\upsilon} \right\rangle; i, \sigma, \upsilon = 1, 2$$

Definition 8. (Weingarten equations) Let the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ with an ONF $N = \{N_1, N_2\}$ is given. Then there hold [3]:

$$N_{\sigma,u^{i}} = -\sum_{j,k=1}^{2} L_{\sigma,ij} g^{jk} X_{u^{k}} + \sum_{g=1}^{2} T_{\sigma,i}^{g} N_{g} .$$

Furthermore, if the parameter lines of M are lines of curvature, Weingarten equations is given as following:

$$\begin{cases} N_{1,u} = k_1^1 X_u & N_{1,v} = k_2^1 X_v \\ N_{2,u} = k_1^2 X_u & N_{2,v} = k_2^2 X_v \end{cases}$$
(4)

Definition 9. The *curvature tensor* $S_{\sigma,ij}^{\omega}$ of the normal bundle of the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ is defined as

$$\begin{split} S^{\omega}_{\sigma,ij} &\coloneqq \partial_{u^{j}} T^{\omega}_{\sigma,i} - \partial_{u^{i}} T^{\omega}_{\sigma,j} + \sum_{\vartheta=1}^{2} \left(T^{\vartheta}_{\sigma,i} T^{\omega}_{\vartheta,j} - T^{\vartheta}_{\sigma,j} T^{\omega}_{\vartheta,i} \right) \\ &= \sum_{m,n=1}^{2} \left(L_{\sigma,im} L_{\omega,jn} - L_{\sigma,jm} L_{\omega,in} \right) g^{mn} \end{split}$$

for *i*, *j*, σ , ω = 1, 2 [3].

Definition 10. Let the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ is given. Then the *scalar curvature* of its normal bundle is defined as

$$S := \frac{1}{W} S_{1,12}^2$$

where W is the area element of M [3].

Definition 11. Let the surface $M = \{X : D \subset \mathbb{R}^2 \to E^4\}$ with with an *ONF* $N = \{N_1, N_2\}$ be given. The *normal transport surface* of M is defined as

$$\overline{M} := \left\{ R(u,v) \middle| R(u,v) = X(u,v) + f(u,v) N_1(u,v) + g(u,v) N_2(u,v) \right\}$$
(5)

where $f, g: D \subset \mathbb{R}^2 \to \mathbb{R}$ are offset functions [3].

The mapping R is then called an *evolute surface* to X if the tangential planes of R agree with the normal planes of X at corresponding points.

ISSN: 1844 - 9581

Proposition 1. Let $f, g \neq 0$. If *R* is an evolute surface to *X*, then *X* has flat normal bundle, i.e. it holds $S \equiv 0$ [3].

Theorem 1. If asurface $\overline{M} \subset E^4$ is the evolute for some surface M, then the Levi-Civita connection of \overline{M} is locally flat [2].

Theorem 2. Minimal surfaces have no evolutes [2].

3. EVOLUTE SURFACES IN E⁴

We would like to point out that, we will assume that the parameter lines of the surface *M* are lines of curvature along the whole study.

Proposition 2. Let $M \subset E^4$ be a surface and the parameter lines of M be lines of curvature. Then, the normal transport surface \overline{M} of M is the evolute surface of M if and only if

$$\begin{cases} f = \frac{k_1^2 - k_2^2}{k_1^1 k_2^2 - k_2^1 k_1^2} \\ g = \frac{k_2^1 - k_1^1}{k_1^1 k_2^2 - k_2^1 k_1^2} \end{cases}$$

where f and g are continuous offset functions and k_i^j are principal curvatures of M, i, j = 1, 2.

Proof. From (4) and (5), we have

$$\begin{cases} R_{u} = \left(1 + fk_{1}^{1} + gk_{1}^{2}\right)X_{u} + f_{u}N_{1} + g_{u}N_{2} \\ R_{v} = \left(1 + fk_{2}^{1} + gk_{2}^{2}\right)X_{v} + f_{v}N_{1} + g_{v}N_{2} \end{cases}$$
(6)

Since \overline{M} is the evolute surface of M, the tangent planes of M and \overline{M} are orthogonal to each other at the corresponding points of the surfaces, i.e., $R_u \perp X_u$, $R_u \perp X_v$, $R_v \perp X_u$ and $R_v \perp X_v$. From hence, $R_u^{T} = 0$ and $R_v^{T} = 0$. Namely,

$$\begin{cases} k_1^1 f + k_1^2 g = -1 \\ k_2^1 f + k_2^2 g = -1 \end{cases}$$

If we solve this system of linear equations using Cramer's rule, we have $\begin{cases}
f = \frac{k_1^2 - k_2^2}{k_1^1 k_2^2 - k_2^1 k_1^2} \\
g = \frac{k_2^1 - k_1^1}{k_1^1 k_2^2 - k_2^1 k_1^2}
\end{cases} \text{ where } \Delta = \begin{vmatrix} k_1^1 & k_1^2 \\ k_2^1 & k_2^2 \end{vmatrix} \neq 0.$

Proposition 3. Let \overline{M} be the normal transport surface of M. Then in view of the regularity asummption of \overline{M} , there hold necessarly

$$\begin{cases} f_u k_2^1 + g_u k_2^2 = 0\\ f_v k_1^1 + g_v k_1^2 = 0 \end{cases}$$

Proof. Using (6) we obtain

$$\begin{cases} R_{uv} = \left(f_{u}k_{2}^{1} + g_{u}k_{2}^{2}\right)X_{v} + f_{uv}N_{1} + g_{uv}N_{2} \\ R_{vu} = \left(f_{v}k_{1}^{1} + g_{v}k_{1}^{2}\right)X_{u} + f_{vu}N_{1} + g_{vu}N_{2} \end{cases}$$
(7)

Since f and g are continuous functions $f_{uv} = f_{vu}$ and $g_{uv} = g_{vu}$. Also, taking into consideration the regularity assumption of \overline{M} , we get

$$\left(f_{u}k_{2}^{1}+g_{u}k_{2}^{2}\right)X_{v}=\left(f_{v}k_{1}^{1}+g_{v}k_{1}^{2}\right)X_{u}$$
(8)

Taking the dot product of (8) with X_v and X_u , respectively, we have

$$\begin{cases} \left(f_u k_2^1 + g_u k_2^2 \right) g_{22} = 0 \\ \left(f_v k_1^1 + g_v k_1^2 \right) g_{11} = 0 \end{cases}$$

It is known that both of g_{11} and g_{22} can not be vanish. So, the proof is completed.

Proposition 4. Let \overline{M} be the evolute surface of M and denote by \overline{K} the Gaussian curvature of \overline{M} . Then it holds $\overline{K} = 0$.

Proof. From (6) the coefficients of the first fundamental form of \overline{M} are

$$\begin{cases} \overline{g}_{11} = f_u^2 + g_u^2 \\ \overline{g}_{12} = f_u f_v + g_u g_v \\ \overline{g}_{22} = f_v^2 + g_v^2 \end{cases}$$
(9)

where \langle , \rangle is the standart scalar product in E^4 .

Let us consider an orthonormal normal frame (ONF) of \overline{M} . Since \overline{M} is the evolute surface of M

$$\chi(M) \perp \chi(\overline{M}) \Rightarrow \chi(M) \parallel \chi^{\perp}(\overline{M}).$$

Because of this reason, we can choose an $ONF \ \overline{N} = \{\overline{N}_1, \overline{N}_2\}$ of \overline{M} , such that

$$\begin{cases} \overline{N}_{1} = \frac{1}{\sqrt{g_{11}}} X_{u} \\ \overline{N}_{2} = \frac{1}{\sqrt{g_{22}}} X_{v} \end{cases}$$
(10)

Hence, using (7) and (10) we can calculate the coefficients of the second fundamental form of *M* as following:

$$\begin{cases} \overline{L}_{1,11} = -\sqrt{g_{11}} \left(f_u k_1^1 + g_u k_1^2 \right) \\ \overline{L}_{1,12} = \overline{L}_{1,22} = \overline{L}_{2,11} = \overline{L}_{2,12} = 0 \\ \overline{L}_{2,22} = -\sqrt{g_{22}} \left(f_v k_2^1 + g_v k_2^2 \right) \end{cases}$$
(11)

Then, from (1) and using (9) and (11) the Gaussian curvatures of \overline{M} w.r.t. the unit normal vectors \overline{N}_{σ} , $\sigma = 1, 2$ can be obtained as follows: $\overline{K}_1 = \overline{K}_2 = 0$.

From herethe Gaussian curvature of \overline{M} is $\overline{K} = \overline{K}_1 + \overline{K}_2 = 0$. The easy consequences of Proposition 4 are the followings:

Corollary 1. The evolute surface \overline{M} of M is a developable surface.

Corollary 2. Let \overline{M} be the evolute surface of M and denote by $\overline{\omega}$ the area element of \overline{M} . Then it holds .

$$\omega = \left| f_u g_v - g_u f_v \right|.$$

Corollary 3. Let \overline{M} be the evolute surface of M. Then the parameter lines of \overline{M} are lines of curvature if and only if

$$f_u f_v + g_u g_v = 0.$$

Corollary 4. Let \overline{M} be the evolute surface of M and denote by \overline{k}_i^j , i, j = 1, 2, the principal curvatures of \overline{M} . Then it holds

$$\begin{cases} \overline{k}_{1}^{1} = -\frac{\sqrt{g_{11}}\left(f_{u}k_{1}^{1} + g_{u}k_{1}^{2}\right)}{f_{u}^{2} + g_{u}^{2}} & \overline{k}_{2}^{1} = 0\\ \\ \overline{k}_{1}^{2} = 0 & \overline{k}_{2}^{2} = -\frac{\sqrt{g_{22}}\left(f_{v}k_{2}^{1} + g_{v}k_{2}^{2}\right)}{f_{v}^{2} + g_{v}^{2}} \end{cases}$$

Proposition 5. Let \overline{M} be the evolute surface of M and denote by $\overline{\overline{H}}$ the mean curvature vector of \overline{M} . Then it holds

$$\overline{\overline{H}} = -\frac{\sqrt{g_{11}} \left(f_u k_1^1 + g_u k_1^2 \right) \left(f_v^2 + g_v^2 \right) N_1 + \sqrt{g_{22}} \left(f_v k_2^1 + g_v k_2^2 \right) \left(f_u^2 + g_u^2 \right) N_2}{2 \left(f_u g_v - g_u f_v \right)^2}$$

Proof. From (2) the mean curvatures of \overline{M} w.r.t. the unit normal vectors N_{σ} , $\sigma = 1, 2$, can be obtained as the following:

$$\overline{H}_{1} = -\frac{\sqrt{g_{11}} \left(f_{u} k_{1}^{1} + g_{u} k_{1}^{2} \right) \left(f_{v}^{2} + g_{v}^{2} \right)}{2 \left(f_{u} g_{v} - g_{u} f_{v} \right)^{2}}$$

and

$$\overline{H}_{2} = -\frac{\sqrt{g_{22}}\left(f_{v}k_{2}^{1} + g_{v}k_{2}^{2}\right)\left(f_{u}^{2} + g_{u}^{2}\right)}{2\left(f_{u}g_{v} - g_{u}f_{v}\right)^{2}}.$$

Then using (9) and (11) the mean curvature vector \overline{H} of \overline{M} is obtained.

Corollary 5. The evolute surface \overline{M} of M is a minimal surface if and only if

$$g_{11}\left(f_{u}k_{1}^{1}+g_{u}k_{1}^{2}\right)^{2}\left(f_{v}^{2}+g_{v}^{2}\right)^{2}+g_{22}\left(f_{v}k_{2}^{1}+g_{v}k_{2}^{2}\right)^{2}\left(f_{u}^{2}+g_{u}^{2}\right)^{2}=0.$$

Proposition 6. Let \overline{M} be the evolute surface of M and denote by the Gaussian torsion of \overline{M} . Then it holds $\overline{K}_N = 0$.

Proof. From (3) and using (9) and (11) we get

$$\overline{K}_{N} = 0.\left(-\sqrt{g_{22}}\left(f_{v}k_{2}^{1} + g_{v}k_{2}^{2}\right) - 0\right) + 0.\left(-\sqrt{g_{11}}\left(f_{u}k_{1}^{1} + g_{u}k_{2}^{1}\right) - 0\right) = 0.$$

Corollary 6. The evolute surface \overline{M} of M has flat normal bundle, i.e. $R_u^{\perp} = 0$.

Example 1. Let

$$M \dots X(u, v) = (u, v, u^2, v^2)$$

be a surface in E^4 .

We can give the first and second partial derivatives of M as follows:

$$X_{u}(u,v) = (1,0,2u,0)$$

$$X_{v}(u,v) = (0,1,0,2v)$$

$$X_{uu}(u,v) = (0,0,2,0)$$

$$X_{uv}(u,v) = (0,0,2,0)$$

$$X_{vv}(u,v) = (0,0,0,2)$$

and the orthonormal normal space of M is spanned by

$$N_{1}(u,v) = \frac{1}{\sqrt{1+4u^{2}}}(-2u,0,1,0)$$
$$N_{2}(u,v) = \frac{1}{\sqrt{1+4v^{2}}}(0,-2v,0,1)$$

Hence, the coefficients of the first fundamental form of the surface are

$$\begin{cases} g_{11} = 1 + 4u^2 \\ g_{12} = 0 \\ g_{22} = 1 + 4v^2 \end{cases}$$

Similarly, the coefficients of the second fundamental form of the surface are

$$\begin{cases} L_{1,11} = -\frac{2}{\sqrt{1+4u^2}} \\ L_{1,12} = L_{1,22} = L_{2,11} = L_{2,12} = 0 \\ L_{2,22} = -\frac{2}{\sqrt{1+4v^2}} \end{cases}$$

From here, we can say that the parameter lines of M are lines of curvature. In addition that M is not a minimal surface and has flat normal bundle. Also, the principal curvatures of *M* are

$$\begin{cases} k_1^1 = -\frac{2}{\left(1+4u^2\right)^{3/2}} \\ k_2^1 = k_1^2 = 0 \\ k_2^2 = -\frac{2}{\left(1+4v^2\right)^{3/2}} \end{cases}$$

Thus, offset functions can be calculated as follows:

$$f = \frac{\left(1+4u^2\right)^{3/2}}{2}; g = \frac{\left(1+4v^2\right)^{3/2}}{2}$$

where $\Delta = \begin{vmatrix} k_1^1 & k_1^2 \\ k_2^1 & k_2^2 \end{vmatrix} \neq 0$. After all, the evolute surface of *M* can be obtained as

$$\overline{M}...R(u,v) = \left(-4u^3, -4v^3, \frac{1+6u^2}{2}, \frac{1+6v^2}{2}\right)$$

Figure 1. The surface M and its evolute M. Example 2. Let $M...X(u,v) = (u,v,u^2 - v^2, u^2 + v^2)$ be a surface in E^4 . We can give the first and second partial derivatives of M as follows:

$$X_{u}(u,v) = (1,0,2u,2u)$$

$$X_{v}(u,v) = (0,1,-2v,2v)$$

$$X_{uu}(u,v) = (0,0,2,2)$$

$$X_{uv}(u,v) = (0,0,0,0)$$

$$X_{vv}(u,v) = (0,0,-2,2)$$

and the orthonormal normal space of M is spanned by

$$N_{1}(u,v) = \frac{2\sqrt{2}|u|}{\sqrt{1+8u^{2}}} \left(1,0,-\frac{1}{4u},-\frac{1}{4u}\right)$$
$$N_{2}(u,v) = \frac{2\sqrt{2}|v|}{\sqrt{1+8v^{2}}} \left(0,1,\frac{1}{4v},-\frac{1}{4v}\right)$$

Hence, the coefficients of the first fundamental form of the surface are

$$\begin{cases} g_{11} = 1 + 8u^2 \\ g_{12} = 0 \\ g_{22} = 1 + 8v^2 \end{cases}$$

Similarly, the coefficients of the second fundamental form of the surface are

$$\begin{cases} L_{1,11} = \pm \frac{2\sqrt{2}}{\sqrt{1+8u^2}} \\ L_{1,12} = L_{1,22} = L_{2,11} = L_{2,12} = 0 \\ L_{2,22} = \pm \frac{2\sqrt{2}}{\sqrt{1+8v^2}} \end{cases}$$

From here, we can say that the parameter lines of M are lines of curvature. In addition that M is not a minimal surface and has flat normal bundle.

Also, the principal curvatures of M are

ISSN: 1844 - 9581

$$\begin{cases} k_1^1 = \mp \frac{2\sqrt{2}}{\left(1 + 8u^2\right)^{3/2}} \\ k_2^1 = k_1^2 = 0 \\ k_2^2 = \mp \frac{2\sqrt{2}}{\left(1 + 8v^2\right)^{3/2}} \end{cases}$$

Thus, offset functions can be calculated as follows:

$$f = \pm \frac{\left(1 + 8u^2\right)^{3/2}}{2\sqrt{2}}; \ g = \pm \frac{\left(1 + 8v^2\right)^{3/2}}{2\sqrt{2}}$$

where $\Delta = \begin{vmatrix} k_1^1 & k_1^2 \\ k_2^1 & k_2^2 \end{vmatrix} \neq 0$. After all, the evolute surface of *M* can be obtained as

$$\overline{M}...R(u,v) = \left(-8u^3, -8v^3, 3u^2 - 3v^2, \frac{1}{2} + 3u^2 + 3v^2\right)$$

Figure 2. The surface M and its evolute \overline{M} .

REFERENCES

- [1] Arslan, K, Bulca, B, Bayram, B. K., Öztürk, G., Dif. Geo. Dyn. Sys., 17, 13, 2015.
- [2] Cheshkova, M. A., *Mathematical Notes*, **70**, 870, 2001.
- [3] Fröhlich, S., *Surfaces in Euclidean Spaces*, <u>www.scribd.com/doc</u>, 2013.
- [4] Krivonosov, L. N., Amer. Math. Soc. Transl., 92, 139, 1970.
- [5] Maekawa, T., *Computer Aided Design*, **31**, 165, 1999.
- [6] Şemin, F., Diferansiyel Geometri II, İstanbul, 1987.