ORIGINAL PAPER

MODULES THAT HAVE A WEAK δ -SUPPLEMENT IN EVERY TORSION EXTENSION

ESRA ÖZTÜRK SÖZEN¹, FIGEN ERYILMAZ², ŞENOL EREN³

Manuscript received: 19.01.2017; Accepted paper: 22.04.2017; Published online: 30.06.2017.

Abstract. We study modules with the properties $(\delta - TWE)$ and $(\delta - TWEE)$ which are adopted Zöschinger's modules with the properties (E) and (EE). We call a module $(\delta - TWE)$ module if M has a weak δ -supplement in every torsion extension. Similarly if M has ample weak δ -supplements in every torsion extension then M is called $(\delta - TWEE)$ module. We obtain various properties of these modules. We will show that (1) Every direct summand of a $(\delta - TWE)$ module is a $(\delta - TWE)$ module. (2) A module M has the property $(\delta - TWEE)$ iff every submodule of M has the property $(\delta - TWE)$. (3) Any factor module of a $(\delta - TWE)$ module is a $(\delta - TWE)$ module under a special condition. (4) Over a nonlocal ring, if every submodule of a module M is a $(\delta - TWE)$ module, then it is cofinitely weak δ -supplemented.

Keywords: δ *-small submodule, weak* δ *-supplement, torsion extension.*

1. INTRODUCTION

Throughout this paper R will be a commutative domain and all modules are unital left R-modules unless otherwise stated. Let M be an R-module. By $N \le M$ we mean that N is a submodule of M. Recall that a submodule N of M is called small, denoted by $N \ll M$, if $N + L \ne M$ for all proper submodules L of M. Dually a submodule L of M is said to be essential in M, denoted by $L \le M$, if $L \cap K \ne 0$ for each non zero submodule K of M. [13] A module M is said to be singular if $M \cong N/L$ for some module N and a submodule L of N with $L \le N$ [5].

As a generalization of direct summands of a module one can define supplement submodules. A module M is called supplemented, if every submodule N of M has a supplement in M, i.e. a submodule K of M minimal with respect to M = N + K. Equally, K is a supplement of N in M iff M = N + K and $N \cap K \ll K$. If N + K = M and $N \cap K \ll M$, then K is called a weak supplement of N in M. M is weakly supplemented module if every submodule of M has a weak supplement in M. A submodule N of a module M has ample (weak) supplements in M if for all $K \le M$ with M = N + K, there is a (weak) supplement K'of N with $K' \le K$. If every submodule of M has ample (weak) supplements in M, then M is called amply (weak) supplemented [13].

The concept of δ -small submodules was introduced by Zhou in [14], as a generalization of small submodules. A submodule $N \leq M$ is said to be δ -small in M if $N + X \neq M$ for all proper $X \lneq M$ with M/X singular. The sum of all δ -small submodules of a module M is denoted by $\delta(M)$. Let K, N be submodules of a module M.N is called a δ -

¹ Ondokuz Mayıs University, Faculty of Sciences and Arts, Department of Mathematics, 55139 Samsun, Turkey. E-mail: <u>esraozturk55@hotmail.com; figenyuzbasi@gmail.com; seren@omu.edu.tr</u>.

supplement of *K* in *M*, if M = N + K and $N \cap K \ll_{\delta} N$ [7]. Similarly *N* is called a weak δ -supplement of *K* in *M*, if M = N + K and $N \cap K \ll_{\delta} M$ [11]. A module *M* is called (weak) δ -supplemented if every submodule of *M* has a (weak) δ -supplement in *M*. On the other hand, a submodule *N* of *M* is said to have ample (weak) δ -supplements in *M* if every submodule *L* of *M* with M = N + L contains a (weak) δ -supplement of *N* in *M*. The module *M* is called amply (weak) δ -supplemented if every submodule of *M* has ample (weak) δ -supplement in *M*.

Let *R* be a commutative domain and *M* be an *R*-module. We denote by T(M) the set of all elements *m* of *M* for which there exists a nonzero element *r* of *R* such that rm = 0 i.e. $Ann(m) \neq 0$. Then T(M), which is a submodule of *M*, called the torsion submodule of *M*. Especially *M* is called torsion module provided that T(M) = M [13].

For modules $M \leq N$ over commutative domain, we say that N is a torsion extension of M if N/M is torsion. Göçer and Türkmen in [6], studied modules with the property (TE) i.e. modules that have a supplement in every torsion extension. EryIlmaz in [4], studied modules with the property $(\delta - TE)$. Motivated by these we introduce $(\delta - TWE)$ modules i.e. modules that have a weak δ -supplement in every torsion extension. In this study we obtain various properties of modules with the property $(\delta - TWE)$. We show that a class of $(\delta - TWE)$ modules is closed under direct summands and factor modules by a special condition. We prove that every submodule of a module is a $(\delta - TWE)$ module iff it has ample weak δ -supplements in evry torsion extension. We also show that over a non local ring if every submodule of a module M is a $(\delta - TWE)$ module then it is cofinitely weak δ -supplemented.

2. PRELIMINARIES

We will give following lemmas for the completeness.

- **Lemma 1:** Let *M* be an *R*-module, then the following statements are equivalent:
- 1. *M* is cofinitely δ -supplemented
- 2. Every maximal submodule of *M* has a δ -supplement in *M* [1].

Lemma 2: Let *R* be a ring which is not local. If *M* is a simple module then it is torsion [6].

3. RESULTS AND DISCUSSION

Proposition 1: δ -Hollow modules have the property ($\delta - TWE$).

Proof: Let *S* be a δ -hollow module and *N* be any torsion extension of *S*. If *S* is δ -small in *N*, *N* is a weak δ -supplement of *S* in *N*. Suppose that *S* is not δ -small in *M*. Then there is a proper submodule *S'* of *N* such that S + S' = N and N/S is singular. If *S* is simple $S \cap S' = 0$ and so *S'* is a direct summand of *N*. In opposite situation since *S* is δ -hollow, $S \cap S'$ is δ -small in *S*. In both cases, *S'* is a weak δ -supplement of *S* in *N*.

Proposition 2: Every direct summand of a $(\delta - TWE)$ module is a $(\delta - TWE)$ module.

Proof: Let M be a $(\delta - TWE)$ module, U be a direct summand of M and let N be any torsion extension of U. Then $M = A \bigoplus U$ for some submodule $A \leq M$. We denote by T the external direct sum $A \oplus N$ and consider the canonical embedding $\varphi: M \to T$. Then $M \cong$ $(\delta - TWE)$ module and we $\varphi(M)$ is have а $T/\varphi(M) = (A \oplus N)/\varphi(M) \cong (A \oplus N)/(A \oplus U) \cong N/U$ is torsion. Since $\varphi(M)$ is a $(\delta - TWE)$ module, $\varphi(M)$ has a weak δ -supplement V in T, that is, $\varphi(M) + V = T$ and $\varphi(M) \cap V \ll_{\delta} T$. Fort he projection $\pi: T \to N$, we have that $N = U + \pi(V)$. Since $Ker(\pi) \subseteq V$ $\varphi(M)$, we get $\pi(\varphi(M) \cap V) \subseteq \pi(\varphi(M)) \cap \pi(V) = U \cap \pi(V) \ll_{\delta} \pi(T) \leq N$ and so $U \cap$ $\pi(V) \ll_{\delta} N$ is obtained. Hence $\pi(V)$ is a weak δ -supplement of U in N.

Proposition 3: Let *M* be a module. Then the following statements are equivalent:

(1) Every submodule of *M* is a $(\delta - TWE)$ module.

(2) *M* has ample δ -supplements in every torsion extension i.e. *M* is a (δ – *TWEE*) module.

Proof: (1) ⇒ (2) : Suppose that every submodule of *M* is a (δ − *TWE*) module. For a torsion extension Nof *M*, let N = M + K for some submodule *K* of *N*. Note that $N/M = (M + K)/M \cong K/(M \cap K)$ is torsion. By hypothesis $M \cap K$ is a (δ − *TWE*) module and so there exists a submodule *L* of *K* such that $K = (M \cap K) + L$ and $(M \cap K) \cap L = M \cap L \ll_{\delta} K$. Then we have $M \cap L \ll_{\delta} N$ and $N = M + K = M + (M \cap K) + L = M + L$. Hence *L* is a weak δ-supplement of *M* in *N*.

(2) \Rightarrow (1): Let *M* be a module with the property $(\delta - TWEE)$ and let *U* be any submodule of *M*. For a cofinite extession *N* of *U*, let $F = (M \bigoplus N)/H$ where the submodule *H* is the set of all elements (a, -a) of *F* with $a \in U$ and let $\alpha: M \to F$ via $\alpha(m) = (m, 0) + H$, $\beta: N \to F$ via $\beta(n) = (0, n) + H$ for all $m \in M, n \in N$. It is clear that α and β are monomorphisms. Hence we have the following pushout diagram:

where $\mu_1: U \to N$ and $\mu_1: U \to M$ are inclusion mappings. It is easy to prove that F = $Im(\alpha) + Im(\beta)$. Now we define $\gamma: F \to N/U$ by $\gamma((m, n) + H) = n + U$ for all (m, n) + H $H \in F$. Then γ is an epimorphism. Note that $Ker(\gamma) = Im(\alpha)$ and so $N/U \cong F/Im(\alpha)$ is finitely generated. Since α is a monomorphism, by assumption, $Im(\alpha)$ has the property $(\delta - TWEE)$. Then it follows immediately that $Im(\alpha)$ has a weak δ -supplement V in F with $V \leq Im(\beta)$, i.e. $F = Im(\alpha) + V$ and $Im(\alpha) \cap V \ll_{\delta} F$. Then $N = \beta^{-1}(Im(\alpha)) + \beta^{-1}(V) = 1$ $U + \beta^{-1}(V)$. Suppose that $U \cap \beta^{-1}(V) + X = N$ for some submodule X of N with N/Xsingular. Then we have $\beta((U \cap \beta^{-1}(V) + X) = \beta(U \cap \beta^{-1}(V)) + \beta(X) = Im(\alpha) \cap V + \beta(X)$ $\beta(X) = \beta(N)$ since β is a monomorphism. And it is clear that $Im(\alpha) \cap V + \beta(X) + \beta(X)$ $Im(\alpha) = F$. Now we define $\theta: N/X \to \beta(N)/\beta(X)$ by $\theta(n+X) = \beta(n) + \beta(X)$ for all $n + X \in N/X$. Note that θ an isomorphism. Hence is $N/X \cong \beta(N)/\beta(X) \cong \beta(N) + Im(\alpha)/\beta(X) + Im(\alpha) = F/(\beta(X) + Im(\alpha))$ is singular. Since $Im(\alpha) \cap V \ll_{\delta} F$, it follows that $\beta(X) + Im(\alpha) = \beta(N) + Im(\alpha)$. Hence $\beta(X) = \beta(N)$ is obtained because of definition of β . And we have that X = N since β is a monomorphism. That means $U \cap \beta^{-1}(V) \ll_{\delta} N$. So $\beta^{-1}(V)$ is a weak δ -supplement of U in N.

Proposition 4: Let *R* be aring which is not local and let *M* be an *R*-module. If every submodule of *M* is a $(\delta - TE)$ module, then it is cofinitely δ -supplemented.

Proof: By [1, Theo. 2.9], it is sufficies to show that every maximal submodule of M has a δ -supplement in M. Let U be any maximal submodule of M. Then, M/U is simple, and so it is torsion by Lemma 1. By the hypothesis U has a δ -supplement in M. Thus M is cofinitely δ -supplemented.

Definition 5: We call a module M is cofinitely weak δ -supplemented module (or briefly δ -cws module) if every cofinite submodule has a weak δ -supplement in M.

Clearly cofinitely δ -supplemented modules and weakly δ -supplemented modules are cofinitely weak δ -supplemented and a finitely generated module is weakly δ -supplemented if and only if it is a δ -cws module.

Lemma 6: Let *U* and *K* be submodules of *N* such that *K* is a weak δ -supplement of a maximal submodule *M* of *N*. If *K* + *U* has a weak δ -supplement in *N*, then *U* has a weak δ -supplement in *N*.

Proof: Let X be a weak δ -supplement of K + U in N. If $K \cap (X + U) \leq K \cap M \ll_{\delta} N$ then X + K is a weak δ -supplement of U since $U \cap (X + K) \leq X \cap (K + U) + K \cap (X + U) \ll_{\delta} N$. Now suppose that $K \cap (X + U) \not\leq K \cap M$. Since $K/(K \cap M) \cong (K + M)/M = N/M$, $K \cap M$ is a maximal submodule of K. Therefore $(K \cap M) + [K \cap (X + U)] = K$. Then X is a weak δ -supplement of U in N since $U \cap X \leq (K + U) \cap X \ll_{\delta} N$ and $N = X + U + K = X + U + (K \cap M) + [K \cap (X + U)] = X + U$ as $K \cap (X + U) \leq X + U$ and $K \cap M \ll_{\delta} N$. So in both cases there is a weak δ -supplement of U in N.

For a module N, let Γ be the set of all submodules K such that K is a weak δ -supplement for some maximal submodule of N and let δ -cws(N) denote the sum of all submodules from Γ .

Theorem 7: For a module *N*, the following statements are equivalent:

- 1. *N* is a δ -*cws* module;
- 2. Every maximal submodule of *N* has a weak δ -supplement;
- 3. N/δ -*cws*(*N*) has no maximal submodules.

Proof: $(1) \Rightarrow (2)$ is obvious since every maximal submodule is cofinite.

(2) \Rightarrow (3) Suppose that there is a maximal submodule M/δ -cws(N) of N/δ -cws(N). Then M is a maximal submodule of N. By (2), there is a weak δ -supplement K of M in N. Then $K \in \Gamma$, therefore $K \leq \delta$ - $cws(N) \leq M$. Hence N = M + K = M. This contradiction shows that N/δ -cws(N) has no maximal submodules.

 $(2) \Rightarrow (3)$ Let U be a cofinite submodule of N. Then $U + \delta$ -cws(N) is also cofinite. If $N/[U + \delta$ -cws(N)] $\neq 0$, by Theorem 2.8 of Anderson and Fuller (1992), there is a maximal submodule $M/[U + \delta$ -cws(N)] of the finitely generated module $N/[U + \delta$ -cws(N)]. It follows that M is a maximal submodule of N and M/δ -cws(N) is a maximal submodule of N/δ -cws(N). This conradicts (3). So $N = U + \delta$ -cws(N). Now, N/U is finitely generated, say by elements $x_1 + U, x_2 + U, ..., x_m + U$ therefore $N = U + Rx_1 + Rx_2 + \cdots + Rx_m$. Each element x_i (i = 1, 2, ..., m) can be written as $x_i = u_i + c_i$, where $u_i \in U, c_i \in \delta$ -cws(N). Since each c_i is contained in the sum of finite number of submodules from Γ , $N = U + K_1 + K_2 + \dots + K_n$ for some submodules K_1, K_2, \dots, K_n of N from Γ . Now $N = (U + K_1 + K_2 + \dots + K_{n-1}) + K_n$ has a weak δ -supplement, namely 0. By Lemma 6 $U + K_1 + K_2 + \dots + K_{n-1}$ has a weak δ -supplement. Continuing in this way (applying Lemma 6 n-times) we obtain that U has a weak δ -supplement in N.

Lemma 8: Let *R* be a ring which is not local and let *M* be an *R*-module. If every submodule of *M* is $(\delta - TWE)$ module then it is cofinitely weak δ -supplemented.

Proof: It sufficies to show that every maximal submodule of M has a weak δ -supplement in M. Let U be any maximal submodule of M. Then M/U is simple and so it is torsion by Lemma 5. By the hypothesis U has a weak δ -supplement in M. Thus M is cofinitely weak δ -supplemented.

Proposition 9: Let *M* be a module and *U* be a submodule of *M*. If $U \ll_{\delta} M$ and the factor module M/U has the property ($\delta - TWE$), then *M* also has the property ($\delta - TWE$).

Proof: Let N be any torsion extension of M. Then we obtain that $N/M \cong (N/U)/(M/U)$ is torsion. Since M/U has the property $(\delta - TWE)$, there exists a submodule V/U of N/U such that M/U + V/U = N/U and $(M/U) \cap (V/U) = (M \cap V)/U \ll_{\delta} N/U$. Note that M + V = N. Suppose that $(M \cap V) + T = N$ for a submodule T of N such that N/T is singular. Then we obtain $(M \cap V)/U + (T + U)/U = N/U$. Since $(M \cap V)/U \ll_{\delta} N/U$ and $N/T + N \le N/T$ singular we have that (T + U)/U = N/U. It is clear that T + U = N. By hypothesis and since N/T is singular it follows that N = T. Hence $M \cap V \ll_{\delta} N$.

Corollary 10: Let *M* be a finitely generated module. If $M/\delta(M)$ has the property $(\delta - TWE)$, then so does *M*.

Lemma 11: Let *M* be a $(\delta - TWE)$ module and *N* be a torsion extension of *M* such that $\delta(N) = 0$. Then *M* is a direct summand of *N*.

Proof: By assumption, M has a weak δ -supplement in N. Since $M \cap K \ll_{\delta} K$, it follows from $M \cap V \leq \delta(K) \leq \delta(N) = 0$. Hence $N = M \bigoplus K$.

Corollary 12: Let *M* be a $(\delta - TWE)$ module over δ -*V*-ring. Then *M* is a direct summand of any module *N* with *N*/*M* torsion.

Theorem 13: Let $A \le B \le C$ with (C/A) injective. If *B* has the property $(\delta - TWE)$, so does B/A.

Proof: Let N be any extension of B/A. So we have the following commutative diagram with exact rows since C/A is injective [by 16, Lemma 2.16].

Since *h* is monic, $N / (B / A) \cong g(N) / g(B / A) \cong \sigma^{-1}(g(N)) / \sigma^{-1}(g(B/A)) = \sigma^{-1}(g(N)) / \sigma^{-1}(\sigma(B)) \cong \sigma^{-1}(g(N)) / B$ is torsion and *B* has the property $(\delta - TWE)$, $B \cong h(B)$ has a weak δ -supplement *V* in *P* (, that is, h(B) + V = P and $h(B) \cap V \ll_{\delta} P$. We claim that g(V) is a weak δ -supplement of B/A in *N*.

$$\begin{split} B/A + g(V) &= (f\sigma)(B) + g(V) = g(h(B)) + g(V) = g(P) = N, \ B/A \cap g(V) = \\ f(\sigma(B)) \cap g(V) = g[h(B) \cap g(V)] \ll_{\delta} g(V) \end{split}$$

since $h(B) \cap V \ll_{\delta} V$ and g is a homomorphism. Hence $B/A \cap g(V) \ll_{\delta} N$.

Corollary 14: Let *R* be a hereditary ring. If an injective *R*-module *M* has the property $(\delta - TWE)$, then so does every factor module of *M*.

REFERENCES

- [1] Al-Takhman, K., *Int. J. Algebra*, **1**(12), 601, 2007.
- [2] Alizade, R., Büyükaşık, E., Comm. Algebra, **31**(11), 5377, 2003.
- [3] Anderson, F.W., Fuller, K.R., *Rings and Categories of Modules*, Vol. 13 of Graduare Texts in Mathematics, Springer, New York, USA, 1992.
- [4] Eryılmaz, F., Turkish Journal of Science and Technology, 11(2), 35, 2016.
- [5] Gooderal, K.R., *Ring Theory: Nonsingular Rings and Modules*, Dekker, New York, 1976.
- [6] Göçer, F., Türkmen, E., Palest. J. Math., 4(1), 515, 2015.
- [7] Koşan, M.T., Algebra Colloquium, 14(1), 53, 2007.
- [8] Önal, E., Çalışıcı, H., Türkmen, E., *Miskolc Mathematical Notes*, **17**(1), 471, 2016.
- [9] Öztürk, E., Eren, Ş., *Algebra Letters*, **2015**, article ID 3, 2015.
- [10] Talebi, Y., Talaee, B., Vietnam J. Math., 37, 515, 2009.
- [11] Talebi, Y., Moniri Hamzekolaei, A.R., Journal of Algebra, Number Theory an Applications, **13**(2), 193, 2009.
- [12] Tribak, R., Bull. Aust. Math. Soc., 86, 430, 2012.
- [13] Wisbauer, R., *Foundations of Module Theory and Ring Theory*, Vol. 3 of Algebra, Logic and Applications, Gordon and Breach Science, Philadelphia, USA, German edition, 1991.
- [14] Zhou, Y., Algebra Colloquium, 7(3), 305, 2000.
- [15] Zöschinger, H., Math. Scand., 35, 267, 1975.
- [16] Özdemir, S., Journal of the Korean Mathematical Society, 53(2), 403, 2016.