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Abstract. This article is concerned with the approximate solution of fractional order 

endemic model of non-fatal disease in a community. We consider that a population in the 
concerned community is initially in equilibrium with an endemic disease caused by a wild 
type virus. Using Laplace transform coupled with Adomian decomposition method, we obtain 
numerical solution of the proposed model. The mentioned method is known as Laplace 
Adomian decomposition method (LADM). The solutions obtained by this method are 
compared with the solutions obtained by the RK4 and homotopy perturbation method for 
taking classical order derivative of the governing equations. 

Keywords: Fractional derivative, endemic model, Laplace Transform, Adomian 
decomposition method; Analytical solutions. 
 
 
1. INTRODUCTION  
 
 

Mathematical models of the infectious diseases are the important tools to study the 
mechanism through which diseases spread in a community. They are using for the predictions 
of future courses, an outbreak and to evaluating strategies to control an epidemic. The earliest 
idea of mathematical modeling of spread of disease was point out by D. Bernoulli in 1766, 
which gave birth to the start of modern theoretical epidemiology. W. Hamer and R. Ross are 
also considered earlier pioneer of modeling of infectious diseases in beginning of 20th century. 
They used the law of mass action to explain the behavior of epidemic. Later on L. Reed and 
W.H. Frost established a famous model known as the Reed-Frost epidemic model, which 
describes the relationship between the susceptible, infected and immune individual in a 
community. Mckendrick and Kermack [1], formulated a simple deterministic model in 1927 
known as SIR model given by 
 

,

	 	 ,		 
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where the fixed population is consisted of three types which are susceptible, infected and 
isolated individuals which cannot get or transmit the disease for various preseason. ,  are 
the transmission rates between the compartments. 

Let  be the birth rate and  the disease unrelated death rate and  is the disease 
related death rate, is immune class. Then the modified form of the model (1) is obtained in 
[2], which is given by   

 

	 ,

	 ,			 (2) 

 
where 	  is not necessarily constant. The constant presence of a disease in a 
community is called endemic. For example, Malaria is endemic in Sub-Saharan Africa, where 
90 percent deaths occur due to malaria. In the presence of two infected individuals , ́ , a 
single recovered class  and single susceptible class , the following model as in [3], was 
established 
 

	 ́ ,

	 ,

́
́ ́ ́ ́ ,

											

́ ́

 (3) 

 
where  is infectious rate,  is the removal rate and  is the disease death related rate. While 
, ́ , ́ are the corresponding rates of mutant virus.  

These models were studied for their local and global stability in view of classical order 
derivative, see [2]. The above classical model (1), was solved by Biazer [17], with the help of 
Adomian decomposition method (ADM), Rafei et al. [18, 19], by mean of homotopoy 
perturbation method (HPM) and variation iteration method (VIM) respectively. Similarly the 
same model (1) was solved by Fadi et al. [20], by using homotopy analysis method (HAM) 
and Abdul Monim et al. [21], by differential transform method (DTM). 

In last few decades, it has been found that the area involving fractional order 
differential equations have significant applications in various disciplines of science and 
technology; we refer few of them in [4, 6, 13, 17, 20, 22]. The aforementioned models (1), 
and (2) were also studied by considering their fractional order extension, for details see [23- 
25]. Therefore, in recent years, the fractional order models were given much attention, 
because the biological models that involved fractional order derivative are more realistic and 
accurate as compared to the classical order models, for detail see [7-10]. Motivated by the 
above work, in this manuscript, we considered the given modified form of model (3) by 
taking the derivative of the governing equations in fractional order. The arbitrary order shows 
the realistic biphasic decline behavior of infection of disease with a slower rate. Therefore the 
modified model of arbitrary order is 
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́ ,
,

́ ́ ́ ́ ́ ,
́ ́ ,

 

 
 
(4) 

 
Subject to the initial conditions: 

 
0 	 , 0 , ́ 0 , 0 , (5) 

 
where 0 	 1, for 1,2,3,4.  

At 0 	 1, for 1,2,3,4,  the model(4) will be reduced to classical order model. 
Here the initial conditions are interdependent on each other and satisfy the relation 	

, where  is total number of the individuals in the population. 
The numerical solutions are well studied for classical order model, however for non-

integer order model the numerical solutions are rarely studied by using Adomian 
decomposition method coupled with integral transform like Laplace transform, Sumudu 
transform, etc. Therefore, in this article, we develop a simple and easy technique for the 
numerical solutions to the model (4). 

The concerned technique is better than other technique like homotopy analysis and 
perturbation method and variation method. Because our proposed method provide accurate 
solutions and its implementation is also easy. We have also compared our solutions with that 
of the solution obtained by RK4 and homotopy perturbation method. For the developed 
procedure, we assigned random values to the initial conditions and parameters involved in the 
model to verify only the established results. 

 
 

2. NECESSARY FUNDAMENTAL RESULTS AND NOTIONS 
 
 
Definition 2.1 The Riemann-Liouville fractional integral of a function 	 ∈ 	 0, ,  of 
order ∈ 	  is given as 
 

	
Γ

	 , 

 
Provided that the integral on the right is converges and pointwise defined on 0,∞ . 

 
Definition 2.2 The arbitrary order derivative of a function y in Caputo sense over the interval 
0,  is provided by 

 

	 	 	 , where 1 , 

 
 Provided the integral on the right is pointwise on 0,∞ . While 1 and  
represents the integer part of . In particularly, if 0 1, then 
 

	 	 , where 1 , 
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 The following result holds for fractional differential equations 
 

0,			 1 ,			 1, 
	 	 	 ⋯ 	 . 

 
Note: We use Caputo fractional derivative throughout in this paper as it treat initial value 
problems of fractional differential equations like classical order differential equations. 
 
Definition 2.3 We recall the definition of Laplace transform of Caputo derivative as: 
 

	 	 0 , 1 ; 		 	 ∈ . 

 
 In this section, we develop the general procedure of the considered model (4) together 
with initial conditions (5). Applying Laplace transform on both sides of the model (4) as  
 

́ ,
,

́ ́ ́ ́ ́ ,
́ ́ .

 

 
 
(6) 

 
which implies that 
 

0 ́ ,
	 0 ,

́ 	 ́ 0 ́ ́ ́ ́ ,
	 0 ́ ́ .

 

 
 
 
(7) 

 
 Using the initial conditions and taking the inverse Laplace transform in system (7), we 
have 
 

1
́ ,

	
1
	 ,

́ 	 	
1

́ ́ ́ ́ ,

	
1

́ ́ .

 

 
 
 
(8) 

 
 Assuming the solutions , , ́ ,  in the form of infinite series provided by  
 

, 	 , ́ ́ , , 
 
(9) 

 
and the nonlinear terms involved in the model are  and ́  are decomposed in 
term of Adomain polynomials as 
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	 , . 
 
(10)

 
where ,  are Adomian polynomials defined as 
 

	
1

Γ 1
	 , 

		 	 	 	 	∑ 	∑ ́ . 

 
 
(11)

 
 
 Substituting (9), (10) in system (8) and equating the corresponding terms on both sides 
of the equations, we get 
 

	 ,			 , ́ , ,

	 	 	 	 	 ,			 	

,			 ́ 	
́ ́

́ ,			 	

	
́
	 	 	 ,

	 	 	 , 	 	

, ́ 	 	
́ ́

́ , 	 	

	
́
	 	

.

.

.

	 	 	 , 	 	

, ́ 	 	
́ ́

	 ́ 	,

	
́

.

 
 
 
 
 
 
 
 
 
 
(12)

 
 Taking inverse Laplace transform of (12), we get 
 

	
Γ 1

, 	 , ́ , 	 , 

 , ,	 

́ ́
Γ 1

, 	 ́
Γ 1

, 



Numerical treatment of fractional …                                                                  Kamal Shah and Samia Bushnaq 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

262

	 	
Γ 2 1

	
Γ 3 1

	
Γ 1

Γ 2 1 Γ 4 1

	 ́ ́
Γ 1

	
Γ 2 1 Γ 4 1

, 

	
Γ 2 1

	
Γ 1

	
Γ 2 1

, 

́ 	 ́
Γ 2 1

	
Γ 	 1

	
Γ 2 1

, 

Γ 2 1
́

Γ 1

́
Γ 2 1

. 

 
 On the above fashion, we can obtain the remaining terms similarly. Finally, we get the 
solution in the form of infinite four series as given by 
 

	 ∑ , 	∑ , ́ ∑ ́ , ∑ .  
(13)

 
 
3. CONERGENCE ANALYSIS 
 
 
 The obtained solutions are in the form of four series, which rapidly converge. The 
convergence can easily be derived by using classical technique available as used in [31-33], 
for checking the convergence of infinite series (13). However, for sufficient condition of 
convergence of afore said four series, we give the following theorem. 
 
Theorem 4.1 Let  and  be two Banach spaces and :	 	 → 	  be a contractive nonlinear 
operator and , , ́ ,  such that for all , ∗ 	 ∈ 	 , ∥ 	 	 ∗ 	 ∥	 	 	 ∥ 	
	 ∗ 	 ∥, 0 	 1. Then in view of Banach contraction theorem  has a unique fixed point  
such that 	 , where , , ́ , . 
 Let us write the generated series (13), by the aforementioned Laplace Adomian 
decomposition method (LADM) as 
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	 , 	 , 1,2,3, …, 

 
and suppose that 	 ∈ 	 , where ∗ 	 ∈ 	 ∶	∥ 	 	 ∗ 	 ∥	 	 , then 
we have 

(a) 	 ∈ 	; 
(b) lim → 	 . 

 
Proof: (a) In view of mathematical induction for 1, we have 
 

∥ 	 	 	 ∥	 	∥ 	 	 ∥	 	 	 ∥ 	 	 ∥. 
 
Assume that the result is true for 1, then 
 

∥ 	 	 	 ∥		 	 	 ∥ 	 	 ∥. 
 
We have  
 

∥ 	 		 ∥	 	∥ 	 	 ∥	 	 ∥ 	 	 ∥	 	 	 ∥ 	 	 ∥. 
 
Hence we have, 
 

∥ 	 		 ∥	 	 ∥ 	 	 ∥	 	 	  
 
hich implies that 	 ∈ . 
 
(b) As ∥ 	 		 ∥	 	 ∥ 	 	 ∥ and as lim → 0. So, we have lim

→
	 ∥

	 		 ∥	→ 0 which implies that lim → 	 .                                                                 □ 
 
 
4. NUMERICAL SIMULATION 
 
 
 Here, in this section, we find numerical solution of the considered model (4). 
Considered the population is in equilibrium with a wild type virus, then to find numerical 
solution in the form of infinite series by LADM, the following values are assigned to the 
parameters involved in the model (4). 
 

Table1. Values of the parameters involved in the model (4). 
Parameter Description of the parameter Parameter Description of the parameter 

30 Initial population of susceptible class 0.02 Removable rate 
10 Initial population of first infected class 0.01 Disease related death rate 
5 Initial population of second infected class 0.1 Mutant virus rate 
15 Initial population of recovered class ́ 0.11 Mutant virus rate 
0.1 Birth rate ́ 0.2 Mutant virus rate 
0.01 Virus infection rate 1.0 Disease unrelated death rate 

Then in view of the Tabel 1, the first three terms of system (3) are given as 
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30 	
4

Γ 1
, 10, ́ 5, 15

	
18

Γ 1
	
0.8	

Γ 2 1
, 	

0.2
Γ 1

, ́ 	
1.45	
Γ 1

, 	
2.75	

Γ 1

	
14.28	
Γ 2 1

	
0.8	

Γ 3 1
	
0.54	

Γ 1
	
2.52	

Γ 1
	
2.88	
Γ 4 1

	
0.0004	
Γ 2 1

	
1.8	

Γ 1
	
0.08	

Γ 2 1
,

́ 	
0.4205	
Γ 2 1

	
0.4	

Γ 1
	

2.4	
Γ 2 1

,

	
0.658
Γ 2 1

0.01
Γ 1

.

 
 Now, if we assign 1, 1,2,3,4, then we get the series solutions for first few 
terms as: 
 

30 14 5.21 1.333333334 0.1200000000 ,
10 0.2 1.299800000 0.1333333334 ,

́ 5 1.45 0.1025000000 0.4000000001 ,
15 2.75 0.3240000000 .

 (15)

 
 In same fashion, if we assign	 0.95, 1,2,3,4, we receive the series solutions as: 
 

30 14.28745427 . 5.702230568 . 1.6045778844 .

1.614543269 . ,
10 0.2041064896 . 1.422602551 . 0.1604577884 . ,

́ 5 1.479772050 . 0.1121839987 . 0.4813733652 . ,
15 2.806464232 . 0.3546108837 . .

 (16)

 
 Similarly, taking 0.95, 1,2,3,4 , we get 
 

30 14.80523957 . 6.745708214 . 0.2277092469 .

0.2841328987 . ,
10 0.2115034224 . 1.682931197 . 0.2277092469 . ,

́ 5 1.533399812 . 0.1327130695 . 0.6831277406 . ,
15 2.908172058 . 0.4195027757 . .

 (17)

 
and taking 0.85, 1,2,3,4, one has 
 

30 15.23291353 . 7.838473949 . 0.3138169319 .

0.4800000001 . ,
10 0.2176130504 . 1.955556322 . 0.3138169319 . ,

́ 5 1.577694615 . 0.1542118195 . 0.9414807958 . ,
15 2.992179443 . 0.4874598003 . .

 (18)

 

(14)
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 Now, we plot the approximate solutions against different fractional orders in the 
following Figure. 

 
Figure 1. Plot of approximate values of various classes for different values of , , , , . 

 
 From the plot, we see that when the order is smaller faster the decay of susceptible 

 up to some time, then the process is inverted and the same class grows more rapidly on 
the same smaller order of the differentiation and vice versa, this behavior can be observed 
from the Figure 1 subplot (a). Similarly from the subplot (b), one can observes that smaller 
the fractional order fastest the decaying process of the first infected class with the passage of 
time and vice versa, while in Subplot (c), the second infected class initially grows at smaller 
order for some time but after some time at the same smaller fractional order it decays rapidly 
as compared to the greater fractional order. In the Subplot (b), the recovered class is decaying 
initially on smaller fractional order then the process become slowest after some time as 
compared to other fractional order and vice versa. 

We compare the solution obtained by our proposed method with famous RK4 method 
and homotopy perturbation (HPM) method. In the following tables, we give the comparison 
of the proposed method with that of RK4 method. With the help of homotopy perturbation 
method by using classical order 1, 1,2,3,4, we get the series solutions of the 
proposed model after first three terms like performed in [18], as given bellow:    
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30 16 4.22 0.1332 0.13222 ,
10 0.34 1.34213 0.23456 ,

́ 5 1.465 0.1100456 0.421110000006 ,
15 2.774 0.43200 .

 (19)

    

 
 

Figure 2 Comparison of solutions obtained by using proposed and homotopy perturbation method for 
, , , , . 

 
The comparison plots between different compartments are given in Fig. 2 which 

shows that our proposed method gives almost similar approximate solutions for the concerned 
model (1) to that obtained by using homotopy perturbation method up to the first three terms. 
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Table 2. Approximate solutions of proposed model (1) at , , , , . 
Time (week)   ́   

0 30.00000 10.00000 5.00000 15.00000 
0.2 26.83943 8.57738 6.49955 12.45488 
0.4 24.33665 7.25664 6.45489 10.34709 
0.6 23.51995 6.09654 7.35295 8.64598 
0.8 22.25181 5.09710 7.27056 7.20178 
1.0 21.46333 4.19813 6.67813 6.07813 
1.2 21.14016 3.44470 5.98399 5.14242 
1.4 21.43845 3.14282 5.20121 4.37001 
1.6 22.27016 2.35215 4.45825 3.60753 
1.8 23.71771 1.92533 3.88356 3.04329 
2.0 25.82666 1.58989 3.26157 2.57085 

 
Table 3. Approximate solutions of proposed model (1) at , , , ,  by using RK4 method. 
Time (week)  ́

0 30.00000 10.00000 5.00000 15.00000 
0.2 26.93948 8.57439 6.48432 12.43030 
0.4 24.73602 7.25550 7.36831 10.34518 
0.6 23.09424 6.07969 7.59220 8.64421 
0.8 21.24964 5.05950 7.30286 7.24645 
1.0 21.37508 4.19092 6.70465 6.08937 
1.2 21.18643 3.46077 5.96843 5.12556 
1.4 21.43992 3.14234 5.20747 4.31897 
1.6 22.14428 2.34745 4.48562 3.64174 
1.8 23.54309 1.93056 3.83317 3.07190 
2.0 25.32666 1.58696 3.26024 2.59179 

 
 

6. CONCLUSION 
 
 

In this paper, we have considered a fractional order endemic model of non-fatal 
disease in a community. The concerned model was investigated for the numerical solutions 
via using Laplace Adomain decomposition method. The solutions obtained in the form of a 
series which are rapidly convergent. Also the behavior of the solutions has been verified by 
plotting the solutions against time for different fractional orders. Also the numerical solutions 
obtained by LADM with that of RK4 method in Table 2. From Table 2, one can observes that 
the method provides excellent numerical solutions for nonlinear fractional order models as 
compared to other methods like homotopy analysis and homotopy perturbation method, RK4 
methods etc. Because these methods involve an extra parameter h at which the solutions 
depend but our propped method need no parameter and easy to understand and to implement. 
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