
Journal of Science and Arts                                                                   Year 17, No. 2(39), pp. 257-268, 2017 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

ORIGINAL PAPER

NUMERICAL TREATMENT OF FRACTIONAL ENDEMIC DISEASE 
MODEL VIA LAPLACE ADOMIAN DECOMPOSITION METHOD 

KAMAL SHAH1, SAMIA BUSHNAQ2 

_________________________________________________ 
Manuscript received: 12.01.2017; Accepted paper: 04.04.2017;  

Published online: 30.06.2017. 

 
 
Abstract. This article is concerned with the approximate solution of fractional order 

endemic model of non-fatal disease in a community. We consider that a population in the 
concerned community is initially in equilibrium with an endemic disease caused by a wild 
type virus. Using Laplace transform coupled with Adomian decomposition method, we obtain 
numerical solution of the proposed model. The mentioned method is known as Laplace 
Adomian decomposition method (LADM). The solutions obtained by this method are 
compared with the solutions obtained by the RK4 and homotopy perturbation method for 
taking classical order derivative of the governing equations. 

Keywords: Fractional derivative, endemic model, Laplace Transform, Adomian 
decomposition method; Analytical solutions. 
 
 
1. INTRODUCTION  
 
 

Mathematical models of the infectious diseases are the important tools to study the 
mechanism through which diseases spread in a community. They are using for the predictions 
of future courses, an outbreak and to evaluating strategies to control an epidemic. The earliest 
idea of mathematical modeling of spread of disease was point out by D. Bernoulli in 1766, 
which gave birth to the start of modern theoretical epidemiology. W. Hamer and R. Ross are 
also considered earlier pioneer of modeling of infectious diseases in beginning of 20th century. 
They used the law of mass action to explain the behavior of epidemic. Later on L. Reed and 
W.H. Frost established a famous model known as the Reed-Frost epidemic model, which 
describes the relationship between the susceptible, infected and immune individual in a 
community. Mckendrick and Kermack [1], formulated a simple deterministic model in 1927 
known as SIR model given by 
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where the fixed population is consisted of three types which are susceptible, infected and 
isolated individuals which cannot get or transmit the disease for various preseason. ߚ,  are ߛ
the transmission rates between the compartments. 

Let ߙ be the birth rate and ݀ the disease unrelated death rate and ܿ is the disease 
related death rate, ݓis immune class. Then the modified form of the model (1) is obtained in 
[2], which is given by   
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where ܰ ൌ	ݑ଴ ൅ ଴ݒ ൅  ଴ is not necessarily constant. The constant presence of a disease in aݓ
community is called endemic. For example, Malaria is endemic in Sub-Saharan Africa, where 
90 percent deaths occur due to malaria. In the presence of two infected individuals ݒ,  a ,ݒ́
single recovered class ݓ and single susceptible class ݑ, the following model as in [3], was 
established 
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where ߚ is infectious rate, ߛ is the removal rate and ܿ is the disease death related rate. While 
ሖߚ , ,ߛ́ ܿ́ are the corresponding rates of mutant virus.  

These models were studied for their local and global stability in view of classical order 
derivative, see [2]. The above classical model (1), was solved by Biazer [17], with the help of 
Adomian decomposition method (ADM), Rafei et al. [18, 19], by mean of homotopoy 
perturbation method (HPM) and variation iteration method (VIM) respectively. Similarly the 
same model (1) was solved by Fadi et al. [20], by using homotopy analysis method (HAM) 
and Abdul Monim et al. [21], by differential transform method (DTM). 

In last few decades, it has been found that the area involving fractional order 
differential equations have significant applications in various disciplines of science and 
technology; we refer few of them in [4, 6, 13, 17, 20, 22]. The aforementioned models (1), 
and (2) were also studied by considering their fractional order extension, for details see [23- 
25]. Therefore, in recent years, the fractional order models were given much attention, 
because the biological models that involved fractional order derivative are more realistic and 
accurate as compared to the classical order models, for detail see [7-10]. Motivated by the 
above work, in this manuscript, we considered the given modified form of model (3) by 
taking the derivative of the governing equations in fractional order. The arbitrary order shows 
the realistic biphasic decline behavior of infection of disease with a slower rate. Therefore the 
modified model of arbitrary order is 
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Subject to the initial conditions: 

 
ሺ0ሻݑ ൌ 	 ଵܰ, ሺ0ሻݒ ൌ ଶܰ, ሺ0ሻݒ́ ൌ ଷܰ, ሺ0ሻݓ ൌ ସܰ, (5) 

 
where 0 ൏ ௜ߙ	 ൑ 1, for ݅ ൌ 1,2,3,4.  

At 0 ൏ ௜ߙ	 ൑ 1, for ݅ ൌ 1,2,3,4,  the model(4) will be reduced to classical order model. 
Here the initial conditions are interdependent on each other and satisfy the relation ܰ ൌ	 ଵܰ ൅
ଶܰ ൅ ଷܰ ൅ ସܰ, where ܰ is total number of the individuals in the population. 

The numerical solutions are well studied for classical order model, however for non-
integer order model the numerical solutions are rarely studied by using Adomian 
decomposition method coupled with integral transform like Laplace transform, Sumudu 
transform, etc. Therefore, in this article, we develop a simple and easy technique for the 
numerical solutions to the model (4). 

The concerned technique is better than other technique like homotopy analysis and 
perturbation method and variation method. Because our proposed method provide accurate 
solutions and its implementation is also easy. We have also compared our solutions with that 
of the solution obtained by RK4 and homotopy perturbation method. For the developed 
procedure, we assigned random values to the initial conditions and parameters involved in the 
model to verify only the established results. 

 
 

2. NECESSARY FUNDAMENTAL RESULTS AND NOTIONS 
 
 
Definition 2.1 The Riemann-Liouville fractional integral of a function ܨ	 ∈ 	 ,ଵሺሾ0ܮ ܾሿ, ܴሻ of 
order ݍ ∈ 	ܴା is given as 
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Provided that the integral on the right is converges and pointwise defined on ሺ0,∞ሻ. 

 
Definition 2.2 The arbitrary order derivative of a function y in Caputo sense over the interval 
ሾ0, ܾሿ is provided by 
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 Provided the integral on the right is pointwise on ሺ0,∞ሻ. While ݊ ൌ ሾݍሿ ൅ 1 and ሾݍሿ 
represents the integer part of ݍ. In particularly, if 0 ൏ ݍ ൏ 1, then 
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 The following result holds for fractional differential equations 
 

ሻݐሺܨ௤ܦ ൌ 0,			݊ െ 1 ൏ ݍ ൑ ݊,			݊ ൌ ሾݍሿ ൅ 1ା଴
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Note: We use Caputo fractional derivative throughout in this paper as it treat initial value 
problems of fractional differential equations like classical order differential equations. 
 
Definition 2.3 We recall the definition of Laplace transform of Caputo derivative as: 
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 In this section, we develop the general procedure of the considered model (4) together 
with initial conditions (5). Applying Laplace transform on both sides of the model (4) as  
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which implies that 
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 Using the initial conditions and taking the inverse Laplace transform in system (7), we 
have 
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 Assuming the solutions ݑሺݐሻ, ,ሻݐሺݒ ,ሻݐሺݒ́   ሻ in the form of infinite series provided byݐሺݓ
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and the nonlinear terms involved in the model are ݑሺݐሻݒሺݐሻ and ݑሺݐሻ́ݒሺݐሻ are decomposed in 
term of Adomain polynomials as 
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 Substituting (9), (10) in system (8) and equating the corresponding terms on both sides 
of the equations, we get 
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 Taking inverse Laplace transform of (12), we get 
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ఈరݐ

Γሺߙସ ൅ 1ሻ
, 
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ଶݑ ൌ ݀ ଵܰ൫݀ ൅ ߚ	 ଶܰ ൅	ߚሖ ସܰ൯
ଶఈభݐ

Γሺ2ߙଵ ൅ 1ሻ
൅ ݀ܰߙ	

ଷఈభݐ

Γሺ3ߙଵ ൅ 1ሻ

െ ߚ	 ଵܰ ଶܰ൫ߚ ଵܰ െ ሺߛ ൅ ݀ ൅ ܿሻ൯
ఈభାఈమݐ

Γሺߙଵ ൅ ଶߙ ൅ 1ሻ

൅ ߚ ଶܰ ଵܰ ቈ൫ߙ ൅ ߚ ଶܰ ൅ ሖߚ ସܰ൯
ଶఈభݐ

Γሺ2ߙଵ ൅ 1ሻ
൅ ݀ܰߙ

ସఈభݐ

Γሺ4ߙଵ ൅ 1ሻ
቉

െ	ߚሖ ଵܰ ସܰൣߚሖ ଵܰ െ ሺ́ߛ ൅ ݀ ൅ ܿ́ሻ൧
ఈభାఈయݐ

Γሺߙଵ ൅ ଷߙ ൅ 1ሻ

൅	ߚሖ ଵܰ ቈሺ݀ ൅ ߚ ଶܰ ൅ ସܰሻ
ଶఈభݐ

Γሺ2ߙଵ ൅ 1ሻ
൅ ݀ܰߙ

ସఈభݐ

Γሺ4ߙଵ ൅ 1ሻ
቉, 

ଶݒ ൌ 	 ଶܰሾߚ ଵܰ െ ሺߛ ൅ ݀ ൅ ܿሻሿଶ
ଶఈమݐ

Γሺ2ߙଶ ൅ 1ሻ
െ ߚ	 ଵܰ ଶܰൣ݀ ൅ ߚ ଶܰ ൅ ሖߚ ସܰ൧

ఈభାఈమݐ

Γሺߙଵ ൅ ଶߙ ൅ 1ሻ

െ ߚߙ	 ଶܰ݀ܰ
ଶఈభାఈమݐ

Γሺ2ߙଵ ൅ ଶߙ ൅ 1ሻ
, 

ଶݒ́ ൌ 	 ଷܰሾߚሖ ଶܰ െ ሺ́ߛ ൅ ݀ ൅ ܿሻሿଶ
ଶఈయݐ

Γሺ2ߙଷ ൅ 1ሻ

െ	ߚሖ ଷܰ ଵܰ ቈ൫݀ ൅ ߚ ଶܰ ൅ ሖߚ ଷܰ൯
ఈభାఈయݐ

Γሺߙଵ ൅ 	ଷߙ ൅ 1ሻ
൅ ܰ݀ߙ	

ଶఈభାఈయݐ

Γሺ2ߙଵ ൅ ଷߙ ൅ 1ሻ
቉, 

ଶݓ ൌ ሺߚ ଵܰ െ ሺߛ ൅ ݀ ൅ ܿሻሻ ቈߛ ଵܰ
ଶఈరݐ

Γሺ2ߙସ ൅ 1ሻ
൅ ߛ́ ଷܰ

ఈయାఈరݐ

Γሺߙଷ ൅ ସߙ ൅ 1ሻ
቉

െ ݀ሺߛ ଶܰ ൅ ߛ́ ଷܰ െ ݀ ସܰሻ
ଶఈరݐ

Γሺ2ߙସ ൅ 1ሻ
. 

 
 On the above fashion, we can obtain the remaining terms similarly. Finally, we get the 
solution in the form of infinite four series as given by 
 
ሻݐሺݑ ൌ 	∑ ሻݐ௞ሺݑ

ஶ
௞ୀ଴ , ሻݐሺݒ ൌ 	∑ ሻݐ௞ሺݒ

ஶ
௞ୀ଴ , ሻݐሺݒ́ ൌ ∑ ሻݐ௞ሺݒ́

ஶ
௞ୀ଴ , ሻݐሺݓ ൌ ∑ ሻݐ௞ሺݓ

ஶ
௞ୀ଴ .  

(13)
 
 
3. CONERGENCE ANALYSIS 
 
 
 The obtained solutions are in the form of four series, which rapidly converge. The 
convergence can easily be derived by using classical technique available as used in [31-33], 
for checking the convergence of infinite series (13). However, for sufficient condition of 
convergence of afore said four series, we give the following theorem. 
 
Theorem 4.1 Let ࣟ and Ԫ be two Banach spaces and ࣠:	ࣟ	 → 	ࣟ be a contractive nonlinear 
operator and च ൌ ሺݑ, ,ݒ ,ݒ́ ∗ሻ such that for all च,चݓ 	∈ 	ࣟ, ∥ 	࣠ሺचሻ െ 	࣠ሺच∗ሻ 	 ∥	൑ 	ߣ	 ∥ 	च െ
	च∗ 	 ∥, 0 ൏ ߣ	 ൏ 1. Then in view of Banach contraction theorem ࣠ has a unique fixed point च 
such that ࣠च ൌ 	च, where च ൌ ሺݑ, ,ݒ ,ݒ́  .ሻݓ
 Let us write the generated series (13), by the aforementioned Laplace Adomian 
decomposition method (LADM) as 
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च௞ ൌ 	࣠ሺ࢛௞ିଵሻ,च௞ିଵ ൌ 	෍࢖௜

௞ିଵ

௝ୀଵ

, ݇ ൌ 1,2,3, …, 

 
and suppose that च૙ ൌ च૙ 	∈ एሺचሻ࡯ ሺचሻ, whereࣟܥ	 ൌ ሼच∗ 	∈ 	ࣟ ∶	∥ 	च െ	च∗ 	 ∥	൏ 	߳ሽ, then 
we have 

(a) च࢑ 	∈  ;	एሺचሻ࡯
(b) lim௞→ஶच࢑ ൌ 	च. 

 
Proof: (a) In view of mathematical induction for ݇ ൌ 1, we have 
 

∥ 	च૚ െ 	च	 ∥	ൌ	∥ 	ऐሺच૙ሻ െ 	ऐሺचሻ ∥	൑ 	ߣ	 ∥ च૙ െ 	च	 ∥. 
 
Assume that the result is true for ݇ െ 1, then 
 

∥ 	च࢑ି૚ െ 	च	 ∥		൑ 	 ௞ିଵߣ 	 ∥ च૙ െ 	च	 ∥. 
 
We have  
 

∥ च࢑ െ 	च		 ∥	ൌ	∥ ऐሺच࢑ି૚ሻ െ 	ऐሺचሻ 	 ∥	൑ ߣ	 ∥ च࢑ି૚ െ 	च	 ∥	൑ 	 ௞ߣ 	 ∥ च૙ െ 	च	 ∥. 
 
Hence we have, 
 

∥ च࢑ െ 	च		 ∥	൑ ௞ߣ 	 ∥ च૙ െ 	च	 ∥	൑ 	 ௞߳ߣ ൏ 	߳ 
 
hich implies that च࢑ 	∈  .एሺचሻ࡯
 
(b) As ∥ च࢑ െ 	च		 ∥	൑ ௞ߣ 	 ∥ च૙ െ 	च	 ∥ and as lim௞→ஶ ௞ߣ ൌ 0. So, we have lim

௞→ஶ
	 ∥ च࢑ െ

	च		 ∥	→ 0 which implies that lim௞→ஶच࢑ ൌ 	च.                                                                 □ 
 
 
4. NUMERICAL SIMULATION 
 
 
 Here, in this section, we find numerical solution of the considered model (4). 
Considered the population is in equilibrium with a wild type virus, then to find numerical 
solution in the form of infinite series by LADM, the following values are assigned to the 
parameters involved in the model (4). 
 

Table1. Values of the parameters involved in the model (4). 
Parameter Description of the parameter Parameter Description of the parameter 

ଵܰ ൌ 30 Initial population of susceptible class ߛ ൌ 0.02 Removable rate 

ଶܰ ൌ 10 Initial population of first infected class ܿ ൌ 0.01 Disease related death rate 

ଷܰ ൌ 5 Initial population of second infected class ߚሖ ൌ 0.1 Mutant virus rate 

ସܰ ൌ 15 Initial population of recovered class ́ߛ ൌ 0.11 Mutant virus rate 
ߙ ൌ 0.1 Birth rate ܿ́ ൌ 0.2 Mutant virus rate 
ߚ ൌ 0.01 Virus infection rate ݀ ൌ 1.0 Disease unrelated death rate 

Then in view of the Tabel 1, the first three terms of system (3) are given as 
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ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ ଴ݑ ൌ 30 ൅	

ఈభݐ4

Γሺߙଵ ൅ 1ሻ
, ଴ݒ ൌ 10, ଴ݒ́ ൌ ଴ݓ,5 ൌ 15

ଵݑ ൌ 	
െ18ݐఈభ

Γሺߙଵ ൅ 1ሻ
െ	

ଶఈభݐ	0.8

Γሺ2ߙଵ ൅ 1ሻ
, ଵݒ ൌ 	

െ0.2ݐఈమ

Γሺߙଶ ൅ 1ሻ
, ଵݒ́ ൌ 	

ఈయݐ	1.45

Γሺߙଷ ൅ 1ሻ
, ଵݓ ൌ 	

െ2.75	ݐఈర

Γሺߙସ ൅ 1ሻ

ଶݑ ൌ 	
ଶఈభݐ	14.28

Γሺ2ߙଵ ൅ 1ሻ
൅	

ଷఈభݐ	0.8

Γሺ3ߙଵ ൅ 1ሻ
െ	

ఈభାఈమݐ	0.54

Γሺߙଵ ൅ ଶߙ ൅ 1ሻ
െ	

ఈభାఈయݐ	2.52

Γሺߙଵ ൅ ଷߙ ൅ 1ሻ
൅	

ସఈభݐ	2.88

Γሺ4ߙଵ ൅ 1ሻ

ଶݒ ൌ 	
ଶఈమݐ	0.0004

Γሺ2ߙଶ ൅ 1ሻ
െ	

ఈభାఈమݐ	1.8

Γሺߙଵ ൅ ଶߙ ൅ 1ሻ
െ	

ଶఈభାఈమݐ	0.08

Γሺ2ߙଵ ൅ ଶߙ ൅ 1ሻ
,

ଶݒ́ ൌ 	
ଶఈయݐ	0.4205

Γሺ2ߙଷ ൅ 1ሻ
െ	

ఈభାఈయݐ	0.4

Γሺߙଵ ൅ ଷߙ ൅ 1ሻ
െ	

ଶఈభାఈయݐ	2.4

Γሺ2ߙଵ ൅ ଷߙ ൅ 1ሻ
,

ଶݓ ൌ 	
0.658 ଶఈరݐ

Γሺ2ߙସ ൅ 1ሻ
െ

0.01 ఈయାఈరݐ

Γሺߙଷ ൅ ସߙ ൅ 1ሻ
.

 
 Now, if we assign ߙ௜ ൌ 1, ݅ ൌ 1,2,3,4, then we get the series solutions for first few 
terms as: 
 

ە
۔

ۓ
ሻݐሺݑ ൌ 30 െ ݐ14 ൅ ଶݐ5.21 ൅ ଷݐ1.333333334 ൅ ,ସݐ0.1200000000

ሻݐሺݒ ൌ 10 െ ݐ0.2 ൅ ଶݐ1.299800000 െ ,ଷݐ0.1333333334
ሻݐሺݒ́ ൌ 5 ൅ ݐ1.45 ൅ ଶݐ0.1025000000 െ ,ଷݐ0.4000000001

ሻݐሺݓ ൌ 15 െ ݐ2.75 ൅ .ଶݐ0.3240000000

 (15)

 
 In same fashion, if we assign	ߙ௜ ൌ 0.95, ݅ ൌ 1,2,3,4, we receive the series solutions as: 
 

ە
ۖ
۔

ۖ
ۓ
ሻݐሺݑ ൌ 30 െ ଴.ଽହݐ14.28745427 ൅ ଵ.ଽ଴ݐ5.702230568 ൅ ଶ.଼ହݐ1.6045778844

൅1.614543269ݐଷ.଼଴,
ሻݐሺݒ ൌ 10 െ ଴.ଽହݐ0.2041064896 െ ଵ.ଽ଴ݐ1.422602551 െ ,ଶ.଼ହݐ0.1604577884
ሻݐሺݒ́ ൌ 5 ൅ ଴.ଽହݐ1.479772050 ൅ ଵ.ଽ଴ݐ0.1121839987 െ ,ଶ.଼ହݐ0.4813733652

ሻݐሺݓ ൌ 15 െ ଴.ଽହݐ2.806464232 ൅ .ଵ.ଽ଴ݐ0.3546108837

 (16)

 
 Similarly, taking ߙ௜ ൌ 0.95, ݅ ൌ 1,2,3,4 , we get 
 

ە
ۖ
۔

ۖ
ۓ
ሻݐሺݑ ൌ 30 െ ଴.଼ହݐ14.80523957 ൅ ଵ.଻଴ݐ6.745708214 ൅ ଶ.ହହݐ0.2277092469

൅0.2841328987ݐଷ.ସ଴,
ሻݐሺݒ ൌ 10 െ ଴.଼ହݐ0.2115034224 െ ଵ.଻଴ݐ1.682931197 െ ,ଶ.ହହݐ0.2277092469
ሻݐሺݒ́ ൌ 5 ൅ ଴.଼ହݐ1.533399812 ൅ ଵ.଻଴ݐ0.1327130695 െ ,ଶ.ହହݐ0.6831277406

ሻݐሺݓ ൌ 15 െ ଴.଼ହݐ2.908172058 ൅ .ଵ.଻଴ݐ0.4195027757

 (17)

 
and taking ߙ௜ ൌ 0.85, ݅ ൌ 1,2,3,4, one has 
 

ە
ۖ
۔

ۖ
ۓ
ሻݐሺݑ ൌ 30 െ ଴.଻ହݐ15.23291353 ൅ ଵ.ହ଴ݐ7.838473949 ൅ ଶ.ଶହݐ0.3138169319

൅0.4800000001ݐଷ.଴଴,
ሻݐሺݒ ൌ 10 െ ଴.଻ହݐ0.2176130504 െ ଵ.ହ଴ݐ1.955556322 െ ,ଶ.ଶହݐ0.3138169319
ሻݐሺݒ́ ൌ 5 ൅ ଴.଻ହݐ1.577694615 ൅ ଵ.ହ଴ݐ0.1542118195 െ ,ଶ.ଶହݐ0.9414807958

ሻݐሺݓ ൌ 15 െ ଴.଻ହݐ2.992179443 ൅ .ଵ.ହ଴ݐ0.4874598003

 (18)

 

(14)
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 Now, we plot the approximate solutions against different fractional orders in the 
following Figure. 

 
Figure 1. Plot of approximate values of various classes for different values of ࢏ࢻ, ࢏ ൌ ૚, ૛, ૜, ૝. 

 
 From the plot, we see that when the order is smaller faster the decay of susceptible 

 ሻ up to some time, then the process is inverted and the same class grows more rapidly onݐሺݑ
the same smaller order of the differentiation and vice versa, this behavior can be observed 
from the Figure 1 subplot (a). Similarly from the subplot (b), one can observes that smaller 
the fractional order fastest the decaying process of the first infected class with the passage of 
time and vice versa, while in Subplot (c), the second infected class initially grows at smaller 
order for some time but after some time at the same smaller fractional order it decays rapidly 
as compared to the greater fractional order. In the Subplot (b), the recovered class is decaying 
initially on smaller fractional order then the process become slowest after some time as 
compared to other fractional order and vice versa. 

We compare the solution obtained by our proposed method with famous RK4 method 
and homotopy perturbation (HPM) method. In the following tables, we give the comparison 
of the proposed method with that of RK4 method. With the help of homotopy perturbation 
method by using classical order ߙ௜ ൌ 1, ݅ ൌ 1,2,3,4, we get the series solutions of the 
proposed model after first three terms like performed in [18], as given bellow:    
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ە
۔

ۓ
ሻݐሺݑ ൌ 30 െ ݐ16 ൅ ଶݐ4.22 ൅ ଷݐ0.1332 ൅ ,ସݐ0.13222

ሻݐሺݒ ൌ 10 െ ݐ0.34 െ ଶݐ1.34213 െ ,ଷݐ0.23456
ሻݐሺݒ́ ൌ 5 ൅ ݐ1.465 ൅ ଶݐ0.1100456 െ ,ଷݐ0.421110000006

ሻݐሺݓ ൌ 15 െ ݐ2.774 ൅ .ଶݐ0.43200

 (19)

    

 
 

Figure 2 Comparison of solutions obtained by using proposed and homotopy perturbation method for 
࢏ࢻ ൌ ૚, ࢏ ൌ ૚, ૛, ૜, ૝. 

 
The comparison plots between different compartments are given in Fig. 2 which 

shows that our proposed method gives almost similar approximate solutions for the concerned 
model (1) to that obtained by using homotopy perturbation method up to the first three terms. 
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Table 2. Approximate solutions of proposed model (1) at ࢏ࢻ ൌ ૚, ࢏ ൌ ૚, ૛, ૜, ૝. 
Time (week) ݑሺݐሻ ݒሺݐሻ ́ݒሺݐሻ ݓሺݐሻ 

ݐ ൌ 0 30.00000 10.00000 5.00000 15.00000 
ݐ ൌ 0.2 26.83943 8.57738 6.49955 12.45488 
ݐ ൌ 0.4 24.33665 7.25664 6.45489 10.34709 
ݐ ൌ 0.6 23.51995 6.09654 7.35295 8.64598 
ݐ ൌ 0.8 22.25181 5.09710 7.27056 7.20178 
ݐ ൌ 1.0 21.46333 4.19813 6.67813 6.07813 
ݐ ൌ 1.2 21.14016 3.44470 5.98399 5.14242 
ݐ ൌ 1.4 21.43845 3.14282 5.20121 4.37001 
ݐ ൌ 1.6 22.27016 2.35215 4.45825 3.60753 
ݐ ൌ 1.8 23.71771 1.92533 3.88356 3.04329 
ݐ ൌ 2.0 25.82666 1.58989 3.26157 2.57085 

 
Table 3. Approximate solutions of proposed model (1) at ࢏ࢻ ൌ ૚, ࢏ ൌ ૚, ૛, ૜, ૝ by using RK4 method. 
Time (week) ݑሺݐሻ ݒሺݐሻ ሻݐሺݒ́ ሻݐሺݓ

ݐ ൌ 0 30.00000 10.00000 5.00000 15.00000 
ݐ ൌ 0.2 26.93948 8.57439 6.48432 12.43030 
ݐ ൌ 0.4 24.73602 7.25550 7.36831 10.34518 
ݐ ൌ 0.6 23.09424 6.07969 7.59220 8.64421 
ݐ ൌ 0.8 21.24964 5.05950 7.30286 7.24645 
ݐ ൌ 1.0 21.37508 4.19092 6.70465 6.08937 
ݐ ൌ 1.2 21.18643 3.46077 5.96843 5.12556 
ݐ ൌ 1.4 21.43992 3.14234 5.20747 4.31897 
ݐ ൌ 1.6 22.14428 2.34745 4.48562 3.64174 
ݐ ൌ 1.8 23.54309 1.93056 3.83317 3.07190 
ݐ ൌ 2.0 25.32666 1.58696 3.26024 2.59179 

 
 

6. CONCLUSION 
 
 

In this paper, we have considered a fractional order endemic model of non-fatal 
disease in a community. The concerned model was investigated for the numerical solutions 
via using Laplace Adomain decomposition method. The solutions obtained in the form of a 
series which are rapidly convergent. Also the behavior of the solutions has been verified by 
plotting the solutions against time for different fractional orders. Also the numerical solutions 
obtained by LADM with that of RK4 method in Table 2. From Table 2, one can observes that 
the method provides excellent numerical solutions for nonlinear fractional order models as 
compared to other methods like homotopy analysis and homotopy perturbation method, RK4 
methods etc. Because these methods involve an extra parameter h at which the solutions 
depend but our propped method need no parameter and easy to understand and to implement. 
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