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Abstract. In this study, the weighted distance matrix and the weighted distance energy 
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eigenvalue of the weighted distance matrix and the weighted distance enrgy are found. 
Moreover, some results are obtained by using these bounds for weighted and unweighted 
graphs.  
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1. INTRODUCTION  
 
 

A weighted graph is a graph that has a numeric label associated with each edge, called 
the weight of edge. In many applications, the edge weights are usually represented by 
nonnegative integers or square matrices. In this paper, we generally deal with simple 
connected weighted graphs where the edge weights are positive definite square matrices. Let  

 EVG ,  be a simple connected weighted graph on n vertices. Let ijw  be the positive 

definite weight matrix of order t of the edge ij and assume that jiij ww  . The weight of a 

vertex Vi  defined as 
ijj

iji ww
~:

 , where j~i denotes the vertex j is adjacent to i. 

Unless otherwise specified, by a weighted graph we mean a graph with each edge 
weight is a positive definite square matrix. 

The weighted distance between vertices i and j of a weighted graph G, denoted by 
 jiDw , , is defined to be the sum of the weights of edges in the shortest path from i to j. Also, 

the weighted distance matrix  GDw  of a weighted graph G, is a block matrix and defined as 

   
ntntijw WGD


 , where 

 
 



 


otherwise.,0

  if,, jijiD
W w

ij  

The eigenvalues of the weihghted distance matrix are denoted by 1 , 2 ,..., nt . Since 

 GDw  is a real symmetric matrix, its eigenvalues are real and can be ordered as 

nt  ...21 . Also, the largest eigenvalue of  jiDw ,  is denoted by   jiDw ,1 . The 
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weighted transmission  iTrw  of a vertex i in a weighted graph G is the sum of the weighted 

distance from i to all other vertices in G, i.e., 
 

   





ij
Vj

ww jiDiTr , . 

 
Note that the transmission of a vertex i is the sum of the entries of  GDw  in the block 

column (row) corresponding to i. The weihted Wiener index  wGW ,  of a weighted graph G 
is defined as 

 

     
 


ji

w
Vi Vj

w jiDjiDwGW ,,
2

1
, . 

 
The weighted distance energy of a weighted graph G is defined as the sum of the 

absolute values of its weighted distance eigenvalues 1 , 2 ,..., nt ., i.e., 

 

  



nt

i
iw GDE

1

 . 

 
The bounding problem for the largest eigenvalue of distance matrix and distance 

energy of unweighted graphs have received much interest. Since the fundemental paper of 
Ruzieh and Powers [12] in 1990, bounding problem for the largest eigenvalue of distance 
matrix of unweighted graphs has appeared frequently in many researches [2-4, 8, 15, 16]. 

The concept of distance energy for unweighted graphs introduced by Indual, Gutman 
and Vijayakumar [6]. The distance energy for unweighted graphs is defined as the sum of the 
absolute values of eigenvalues of its distance matrix. Lower and upper bounds for distance 
energy have been obtained in [7, 9-11, 13]. This paper is organized as follows. In Section 2, 
some upper bounds for the largest eigenvalue of weighted distance matrix are found. Also, 
some results are presented by using these bounds for number weighted and unweighted 
graphs. In Section 3, some upper and lower bounds for the weighted distance energy are 
obtained by using the definition of trace and the concept of weighted Wiener index. 
Moreover, some results on number weighted and unweighted graphs are found. The following 
lemmas are convenient for the graphs we consider. We can begin with the well-known lemma 
below. 
 
Lemma 1.1 (Horn-Johnson [5]). If A is a real symmetric nn  matrix with eigenvalues 

n  ...21 , then for any x   0xn , y   0yn  

 

yyxxyAx
TT

1 . 

 

 The equality holds if and only if x  is an eigenvector of A corresponding to the largest 

eigenvalue 1  and xy   for some   . 
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Lemma 1.2. Let G be a simple connected weighted graph. Then 
 

     ,,
2

,
1 1

2
1 

 


n

i

n

j
w jiDtr

n
wGW  

 
where   wGW ,1  is the largest eigenvalue of  wGW , . 

 
 
2. UPPER BOUNDS FOR THE LARGEST EIGENVALUE OF WEIGHTED 
DISTANCE MATRIX 
 
 
 In this section, some upper bounds for the largest eigenvalue of weighted distance 
matrix are presented. We can give the following theorem. 
 
Theorem 2.1 If G be a simple connected weighted graph, then 
 

   .,max
1

11













 



n

ij
j

w
Vi

jiD                                                                                           (1) 

 

Proof: Let  TT

n

TT
xxxx ,...,, 21  be an eigenvector corresponding to 1  and ix  be the vector 

component of x  such as 
 

 j

T

j
Vj

i

T

i xxxx


 max .                                                                                                    (2) 

 

 Since x  is nonzero, so is ix . We have 

 
   .1 xxGDw                                                                                                               (3) 

 
 From the i-th equation of (3), we have 
 

  ,,
1

1 j

n

ij
j

wi xjiDx 



  

i.e., 

 




n

ij
j

jw

T

ii

T

i xjiDxxx
1

1 , . 

 From (2) and using Lemma 1.1, we get 
 

  




n

ij
j

wi

T

i jiDxx
1

1 , . 
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 Thus   












 



n

ij
j

w
Vi

jiD
1

11 ,max   which completes Proof. 

Corollary 2.2. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 

 












 



n

ij
j

w
Vi

jiD
1

1 ,max . 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     jiDjiD ww ,,1   for all i, j. Using Theorem 2.1 we get the required result. 

 
Corollary 2.3. If G be a simple connected unweighted graph, then 

 

  ,,max
1

1













 



n

ij
j

Vi
jid  

 
where  jid ,  is the length of the shortest path from i to j. 
 
Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 2.2 we get the 

required result. 
 
Theorem 2.4 If G be a simple connected weighted graph, then 
 

      .,,max
1

1
1

1
,

1
















 







n

jk
k

w

n

ik
k

w
Vji

kjDkiD                                                                (4) 

 

Proof: Let  TT

n

TT
xxxx ,...,, 21  be an eigenvector corresponding to 1 , ix  and jx  be the 

vector components of x  such as 
 

 k

T

k
Vk

i

T

i xxxx


 max ,                                                                                                     (5) 

 

 k

T

k
ikk

j

T

j xxxx



:

max .                                                                                                   (6) 

 

 Since x  is nonzero, so is ix . We have 

 
   .1 xxGDw                                                                                                               (7) 

 
 From the i-th equation of (7), we have 
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  ,,
1

1 k

n

ik
k

wi xkiDx 



  

i.e., 

 




n

ik
k

kw

T

ii

T

i xkiDxxx
1

1 , . 

 
 From (6) and using Lemma 1.1, we get 
 

    j

T

ji

T

i

n

ik
k

w xxxxkiD




1

1 , .                                                                    (8) 

 
 Similarly, from the j-th equation of (7), we have 
 

    j

T

ji

T

i

n

jk
k

wj

T

j xxxxkjDxx 




1

11 , .                                                                   (9) 

 
 From (8) and (9), we get 

     







n

jk
k

w

n

ik
k

w kjDkiD
1

1
1

1
2

1 ,,  . 

 

 Thus       .,,max
1

1
1

1
,

1
















 







n

jk
k

w

n

ik
k

w
Vji

kjDkiD   

 The proof is completed. 
 
Corollary 2.5. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 

    .,,max
11

,
1
















 







n

jk
k

w

n

ik
k

w
Vji

kjDkiD  

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     jiDjiD ww ,,1   for all i, j. Using Theorem 2.4 we get the required result. 

 
Corollary 2.6. If G be a simple connected unweighted graph, then 
 

    ,,,max
11

,
1
















 







n

jk
k

n

ik
k

Vji
kjdkid  

 
where  jid ,  is the length of the shortest path from i to j. 
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Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 2.5 we get the 

required result. 
Theorem 2.7 If G be a simple connected weighted graph, then 
 

  
        

      .,,max
1

1
1

1

1
1

1

1

,
1
















 









n

jk
k

w
w

w
n

ik
k

w
w

w

Vji
kjD

jTr

kTr
kiD

iTr

kTr 




                            (10) 

 
Proof: Let us consider the matrix 
 

           ttwttwttw nTrTrTrdiagGN   111 ,...,2,1  . 

 
 The  ji, th element of      GNGDGN w

1  is 

 
  
    





 

otherwise.,0

  if,,
1

1 jijiD
iTr

jTr
w

w

w




 

 

Let  TT

n

TT
xxxx ,...,, 21  be an eigenvector corresponding to 1  of      GNGDGN w

1 , ix  

and jx  be the vector components of x  such as 

 

 k

T

k
Vk

i

T

i xxxx


 max ,                                                                                                   (11) 

 

 k

T

k
ikk

j

T

j xxxx



:

max .                                                                                                 (12) 

 

 Since x  is nonzero, so is ix . We have 

 
        .1

1 xxGNGDGN w                                                                                       (13) 

 
 From the i-th equation of (13), we have 
 

  
     ,,

1 1

1
1 k

n

ik
k

w
w

w
i xkiD

iTr

kTr
x 






  

 i.e., 

  
    





n

ik
k

kw
w

wT

ii

T

i xkiD
iTr

kTr
xxx

1 1

1
1 ,


 . 

 
 From (12) and using Lemma 1.1, we get 
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  
      j

T

ji

T

i

n

ik
k

w
w

w xxxxkiD
iTr

kTr




1

1
1

1 ,



.                                                 (14) 

 
 Similarly, from the j-th equation of (13), we have 
 

 
  
      j

T

ji

T

i

n

jk
k

w
w

w
j

T

j xxxxkjD
jTr

kTr
xx 





1

1
1

1
1 ,


 .                                                (15) 

 
 From (14) and (15), we get 
 

  
        

      .,,max
1

1
1

1

1
1

1

1

,
1
















 







n

jk
k

w
w

w
n

ik
k

w
w

w

Vji
kjD

jTr

kTr
kiD

iTr

kTr 




  

 
 Hence the theorem is proved. 
 
Corollary 2.8. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
 

 
     

    .,,max
11

,
1
















 







n

jk
k

w
w

w
n

ik
k

w
w

w

Vji
kjD

jTr

kTr
kiD

iTr

kTr  

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     jiDjiD ww ,,1   and     iTriTr ww 1  for all i, j. Using Theorem 2.7 we get the 

required result. 
 
Corollary 2.9. If G be a simple connected unweighted graph, then 
 

    ,,,max
11

,
1
















 





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n

jk
k j

k
n

ik
k i

k

Vji
kjd

Tr

Tr
kid

Tr

Tr  

where  jid ,  is the length of the shortest path from i to j and iTr  is the sum of the distances 

from i to all other vertices in G. 
 
Proof: For an unweighted graph,    jidjiDw ,,   and   iw TriTr   for all i; j. 

Using Corollary 2.8 we get the required result. 
 
 
3. BOUNDS FOR THE WEIGHTED DISTANCE ENERGY 
 
 
 In this section, some upper and lower bounds for the weighted distance energy are 
found. Firstly, we present the following lemma. 
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Lemma 3.1. If G be a simple connected weighted graph, nt  ...21  be the 

eigenvalues of  GDw  then 

0
1




nt

i
i  

and 

  



ji

w

nt

i
i jiDtr ,,2 2

1

2  

where   2, jiDtr w  is the trace of  2, jiDw . 

 
Proof: From the denition of trace, we get 

   .0
1




GDtr w

nt

i
i  

 Let us consider the matrix  2GDw .The  ii, the element of  2GDw  is  



n

ij
j

w jiD
1

2, . 

Thus, 

     



ji

ww

nt

i
i jiDtrGDtr .,2 22

1

2  

This completes the Proof. 
 
Theorem 3.2. If G be a simple connected weighted graph, then 
 

        



ji

ww
ji

w jiDtrntGDEjiDtr 22 ,2,2 .                                                (16) 

 
Proof: From the definition of weighted distance energy, using Lemma 3.1 and Cauchy-
Schwartz inequality, we get 

  
2

2

1

2

1

nt

w i
i

nt

i
i

DE G

nt









 
  
 






 

       



ji

w jiDtrnt 2,2 .                                            (17) 

 
 On the other hand, from the definition of weighted distance energy, we have 
 

  
2

2

1

nt

w i
i

DE G 


   
 
 2

1
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i
i




   

    



ji

w jiDtr 2,2 .                                  (18) 

 From (17) and (18), we get 
 

       



ji

ww
ji

w jiDtrntGDEjiDtr 22 ,2,2 , 
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so the proof is completed. 
 
Corollary 3.3. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
 

     



ji

ww
ji

w jiDnGDEjiD 22 ,2,2 . 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     22 ,, jiDjiDtr ww   for all i, j. Using Theorem 3.2 we get the required result. 
 
Corollary 3.4. If G be a simple connected unweighted graph, then 
 

     



ji

w
ji

jidnGDEjid 22 ,2,2 , 

 
where  jid ,  is the length of the shortest path from i to j. 
 
Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 3.3 we get the 

required result. 
 
Theorem 3.5. If G be a simple connected weighted graph, then 
 

        









 



2
1

2
1 21 μi,jDtrntμGDE

ji
ww .                                                             (19) 

 
Proof: By the definition of weighted distance energy and using Cauchy-Schwartz inequality 
and Lemma 3.1, we get 

    
2

2 2 2
1 1

2 1

1
nt nt

w i i
i i

DE G μ μ nt μ μ
 

          
   
   

                               









 



2
1

2,21 μjiDtrnt
ji

w  

 
and then 

       









 



2
1

2
1 21 μi,jDtrntμGDE

ji
ww . 

 
 Hence the theorem is proved. 
 
Corollary 3.6. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
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      









 



2
1

2
1 21 μi,jDnμGDE

ji
ww . 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     22 ,, jiDjiDtr ww   for all i, j. Using Theorem 3.5 we get the required result. 
 
Corollary 3.7. If G be a simple connected unweighted graph, then 
 

      









 



2
1

2
1 21 μi,jdnμGDE

ji
w , 

 

where  jid ,  is the length of the shortest path from i to j. 
 
Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 3.6 we get the 

required result. 
 
Theorem 3.8. If G be a simple connected weighted graph, then 
 

     GDEG,wWμ
n w1
2 ,                                                                                              (20) 

 
where   G,wWμ1  is the largest eigenvalue of  G,wW . 
 
Proof: Using Theorem 3.2 and Lemma 1.2, we get 

    
  

  
  

2 2

2

1 1

2
2

2
1 1

2
12

2

4

4

4

w w
i j

n n

w
i j

n n

w
i j

DE G tr D i, j

tr D i, j

n
tr D i, j

n

μ W G,w
n



 

 





 
  

 








 

and then 

    G,wWμ
n

GDEw 1
2

 . 

The proof is completed. 
 

Corollary 3.9. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 

   .2
G,wW

n
GDEw   

 

Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     G,wWG,wWμ 1 . Using Theorem 3.8 we get the required result. 
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Corollary 3.10. If G be a simple connected unweighted graph, then 

  W
n

GDEw
2

 , 

where W is the Wiener index for unweighted graphs. 
Proof: For an unweighted graph,   WG,wW  .Using Corollary 3.9 we get the required result. 
 
Theorem 3.11. If G be a simple connected weighted graph, then 
 

          ntw
ji

ww GDntnti,jDtrGDE
2

2 det12  


.                                                     (21) 

 
Proof: From the definition of weighted distance energy and using Lemma 3.1, we get 
 

 

  

2
2 2

1 1

2

2

   2 , .

nt nt

w i i i j
i i i j

w i j
i j i j

DE G μ μ μ μ

tr D i j μ μ
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 

    
 

 

  

 
 

  
 Since for nonnegative numbers the geometric mean smaller than the arithmetic mean. 
Thus, we have 

      

    
 
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w i
i j i
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i j

tr D i j nt nt μ μ
nt nt

tr D i j nt nt μ μ

tr D i j nt nt μ

tr D i j nt nt μ

tr D i j nt nt D G
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

 
      

 
    

 

 
    

 

  
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 

 

 

 



. 

 
and then 

         ntw
ji

ww GDntnti,jDtrGDE
2

2 det12  


. 

 
Hence the theorem is proved. 
 
Corollary 3.12. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
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        nw
ji

ww GDnni,jDGDE
2

2 det12  


. 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     22 ,, jiDjiDtr ww   for all i, j. Using Theorem 3.11 we get the required result. 
Corollary 3.13. If G be a simple connected unweighted graph, then 
 

        n

ji
w GDnni,jdGDE

2
2 det12  



, 

 
where  jid ,  is the length of the shortest path from i to j and  GD  is the distance matrix of 
G. 
 
Proof: For an unweighted graph,    GDGDw   and    jidjiDw ,,   for all i; j. Using 

Corollary 3.12 we get the required result. 
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