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Abstract. In this study, the weighted distance matrix and the weighted distance energy 

for simple connected weighted graphs are considered and some bounds for the largest 
eigenvalue of the weighted distance matrix and the weighted distance enrgy are found. 
Moreover, some results are obtained by using these bounds for weighted and unweighted 
graphs.  
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1. INTRODUCTION  
 
 

A weighted graph is a graph that has a numeric label associated with each edge, called 
the weight of edge. In many applications, the edge weights are usually represented by 
nonnegative integers or square matrices. In this paper, we generally deal with simple 
connected weighted graphs where the edge weights are positive definite square matrices. Let  

 EVG ,  be a simple connected weighted graph on n vertices. Let ijw  be the positive 

definite weight matrix of order t of the edge ij and assume that jiij ww  . The weight of a 

vertex Vi  defined as 
ijj

iji ww
~:

 , where j~i denotes the vertex j is adjacent to i. 

Unless otherwise specified, by a weighted graph we mean a graph with each edge 
weight is a positive definite square matrix. 

The weighted distance between vertices i and j of a weighted graph G, denoted by 
 jiDw , , is defined to be the sum of the weights of edges in the shortest path from i to j. Also, 

the weighted distance matrix  GDw  of a weighted graph G, is a block matrix and defined as 

   
ntntijw WGD


 , where 

 
 



 


otherwise.,0

  if,, jijiD
W w

ij  

The eigenvalues of the weihghted distance matrix are denoted by 1 , 2 ,..., nt . Since 

 GDw  is a real symmetric matrix, its eigenvalues are real and can be ordered as 

nt  ...21 . Also, the largest eigenvalue of  jiDw ,  is denoted by   jiDw ,1 . The 
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weighted transmission  iTrw  of a vertex i in a weighted graph G is the sum of the weighted 

distance from i to all other vertices in G, i.e., 
 

   





ij
Vj

ww jiDiTr , . 

 
Note that the transmission of a vertex i is the sum of the entries of  GDw  in the block 

column (row) corresponding to i. The weihted Wiener index  wGW ,  of a weighted graph G 
is defined as 

 

     
 


ji

w
Vi Vj

w jiDjiDwGW ,,
2

1
, . 

 
The weighted distance energy of a weighted graph G is defined as the sum of the 

absolute values of its weighted distance eigenvalues 1 , 2 ,..., nt ., i.e., 

 

  



nt

i
iw GDE

1

 . 

 
The bounding problem for the largest eigenvalue of distance matrix and distance 

energy of unweighted graphs have received much interest. Since the fundemental paper of 
Ruzieh and Powers [12] in 1990, bounding problem for the largest eigenvalue of distance 
matrix of unweighted graphs has appeared frequently in many researches [2-4, 8, 15, 16]. 

The concept of distance energy for unweighted graphs introduced by Indual, Gutman 
and Vijayakumar [6]. The distance energy for unweighted graphs is defined as the sum of the 
absolute values of eigenvalues of its distance matrix. Lower and upper bounds for distance 
energy have been obtained in [7, 9-11, 13]. This paper is organized as follows. In Section 2, 
some upper bounds for the largest eigenvalue of weighted distance matrix are found. Also, 
some results are presented by using these bounds for number weighted and unweighted 
graphs. In Section 3, some upper and lower bounds for the weighted distance energy are 
obtained by using the definition of trace and the concept of weighted Wiener index. 
Moreover, some results on number weighted and unweighted graphs are found. The following 
lemmas are convenient for the graphs we consider. We can begin with the well-known lemma 
below. 
 
Lemma 1.1 (Horn-Johnson [5]). If A is a real symmetric nn  matrix with eigenvalues 

n  ...21 , then for any x   0xn , y   0yn  

 

yyxxyAx
TT

1 . 

 

 The equality holds if and only if x  is an eigenvector of A corresponding to the largest 

eigenvalue 1  and xy   for some   . 
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Lemma 1.2. Let G be a simple connected weighted graph. Then 
 

     ,,
2

,
1 1

2
1 

 


n

i

n

j
w jiDtr

n
wGW  

 
where   wGW ,1  is the largest eigenvalue of  wGW , . 

 
 
2. UPPER BOUNDS FOR THE LARGEST EIGENVALUE OF WEIGHTED 
DISTANCE MATRIX 
 
 
 In this section, some upper bounds for the largest eigenvalue of weighted distance 
matrix are presented. We can give the following theorem. 
 
Theorem 2.1 If G be a simple connected weighted graph, then 
 

   .,max
1

11













 



n

ij
j

w
Vi

jiD                                                                                           (1) 

 

Proof: Let  TT

n

TT
xxxx ,...,, 21  be an eigenvector corresponding to 1  and ix  be the vector 

component of x  such as 
 

 j

T

j
Vj

i

T

i xxxx


 max .                                                                                                    (2) 

 

 Since x  is nonzero, so is ix . We have 

 
   .1 xxGDw                                                                                                               (3) 

 
 From the i-th equation of (3), we have 
 

  ,,
1

1 j

n

ij
j

wi xjiDx 



  

i.e., 

 




n

ij
j

jw

T

ii

T

i xjiDxxx
1

1 , . 

 From (2) and using Lemma 1.1, we get 
 

  




n

ij
j

wi

T

i jiDxx
1

1 , . 
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 Thus   












 



n

ij
j

w
Vi

jiD
1

11 ,max   which completes Proof. 

Corollary 2.2. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 

 












 



n

ij
j

w
Vi

jiD
1

1 ,max . 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     jiDjiD ww ,,1   for all i, j. Using Theorem 2.1 we get the required result. 

 
Corollary 2.3. If G be a simple connected unweighted graph, then 

 

  ,,max
1

1













 



n

ij
j

Vi
jid  

 
where  jid ,  is the length of the shortest path from i to j. 
 
Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 2.2 we get the 

required result. 
 
Theorem 2.4 If G be a simple connected weighted graph, then 
 

      .,,max
1

1
1

1
,

1
















 







n

jk
k

w

n

ik
k

w
Vji

kjDkiD                                                                (4) 

 

Proof: Let  TT

n

TT
xxxx ,...,, 21  be an eigenvector corresponding to 1 , ix  and jx  be the 

vector components of x  such as 
 

 k

T

k
Vk

i

T

i xxxx


 max ,                                                                                                     (5) 

 

 k

T

k
ikk

j

T

j xxxx



:

max .                                                                                                   (6) 

 

 Since x  is nonzero, so is ix . We have 

 
   .1 xxGDw                                                                                                               (7) 

 
 From the i-th equation of (7), we have 
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  ,,
1

1 k

n

ik
k

wi xkiDx 



  

i.e., 

 




n

ik
k

kw

T

ii

T

i xkiDxxx
1

1 , . 

 
 From (6) and using Lemma 1.1, we get 
 

    j

T

ji

T

i

n

ik
k

w xxxxkiD




1

1 , .                                                                    (8) 

 
 Similarly, from the j-th equation of (7), we have 
 

    j

T

ji

T

i

n

jk
k

wj

T

j xxxxkjDxx 




1

11 , .                                                                   (9) 

 
 From (8) and (9), we get 

     







n

jk
k

w

n

ik
k

w kjDkiD
1

1
1

1
2

1 ,,  . 

 

 Thus       .,,max
1

1
1

1
,

1
















 







n

jk
k

w

n

ik
k

w
Vji

kjDkiD   

 The proof is completed. 
 
Corollary 2.5. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 

    .,,max
11

,
1
















 







n

jk
k

w

n

ik
k

w
Vji

kjDkiD  

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     jiDjiD ww ,,1   for all i, j. Using Theorem 2.4 we get the required result. 

 
Corollary 2.6. If G be a simple connected unweighted graph, then 
 

    ,,,max
11

,
1
















 







n

jk
k

n

ik
k

Vji
kjdkid  

 
where  jid ,  is the length of the shortest path from i to j. 
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Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 2.5 we get the 

required result. 
Theorem 2.7 If G be a simple connected weighted graph, then 
 

  
        

      .,,max
1

1
1

1

1
1

1

1

,
1
















 









n

jk
k

w
w

w
n

ik
k

w
w

w

Vji
kjD

jTr

kTr
kiD

iTr

kTr 




                            (10) 

 
Proof: Let us consider the matrix 
 

           ttwttwttw nTrTrTrdiagGN   111 ,...,2,1  . 

 
 The  ji, th element of      GNGDGN w

1  is 

 
  
    





 

otherwise.,0

  if,,
1

1 jijiD
iTr

jTr
w

w

w




 

 

Let  TT

n

TT
xxxx ,...,, 21  be an eigenvector corresponding to 1  of      GNGDGN w

1 , ix  

and jx  be the vector components of x  such as 

 

 k

T

k
Vk

i

T

i xxxx


 max ,                                                                                                   (11) 

 

 k

T

k
ikk

j

T

j xxxx



:

max .                                                                                                 (12) 

 

 Since x  is nonzero, so is ix . We have 

 
        .1

1 xxGNGDGN w                                                                                       (13) 

 
 From the i-th equation of (13), we have 
 

  
     ,,

1 1

1
1 k

n

ik
k

w
w

w
i xkiD

iTr

kTr
x 






  

 i.e., 

  
    





n

ik
k

kw
w

wT

ii

T

i xkiD
iTr

kTr
xxx

1 1

1
1 ,


 . 

 
 From (12) and using Lemma 1.1, we get 
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      j

T

ji

T

i

n

ik
k

w
w

w xxxxkiD
iTr

kTr




1

1
1

1 ,



.                                                 (14) 

 
 Similarly, from the j-th equation of (13), we have 
 

 
  
      j

T

ji

T

i

n

jk
k

w
w

w
j

T

j xxxxkjD
jTr

kTr
xx 





1

1
1

1
1 ,


 .                                                (15) 

 
 From (14) and (15), we get 
 

  
        

      .,,max
1

1
1

1

1
1

1

1

,
1
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kiD

iTr

kTr 




  

 
 Hence the theorem is proved. 
 
Corollary 2.8. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
 

 
     

    .,,max
11

,
1
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w
w

w
n

ik
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w
w

w

Vji
kjD

jTr

kTr
kiD

iTr

kTr  

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     jiDjiD ww ,,1   and     iTriTr ww 1  for all i, j. Using Theorem 2.7 we get the 

required result. 
 
Corollary 2.9. If G be a simple connected unweighted graph, then 
 

    ,,,max
11

,
1
















 







n

jk
k j

k
n

ik
k i

k

Vji
kjd

Tr

Tr
kid

Tr

Tr  

where  jid ,  is the length of the shortest path from i to j and iTr  is the sum of the distances 

from i to all other vertices in G. 
 
Proof: For an unweighted graph,    jidjiDw ,,   and   iw TriTr   for all i; j. 

Using Corollary 2.8 we get the required result. 
 
 
3. BOUNDS FOR THE WEIGHTED DISTANCE ENERGY 
 
 
 In this section, some upper and lower bounds for the weighted distance energy are 
found. Firstly, we present the following lemma. 
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Lemma 3.1. If G be a simple connected weighted graph, nt  ...21  be the 

eigenvalues of  GDw  then 

0
1




nt

i
i  

and 

  



ji

w

nt

i
i jiDtr ,,2 2

1

2  

where   2, jiDtr w  is the trace of  2, jiDw . 

 
Proof: From the denition of trace, we get 

   .0
1




GDtr w

nt

i
i  

 Let us consider the matrix  2GDw .The  ii, the element of  2GDw  is  



n

ij
j

w jiD
1

2, . 

Thus, 

     



ji

ww

nt

i
i jiDtrGDtr .,2 22

1

2  

This completes the Proof. 
 
Theorem 3.2. If G be a simple connected weighted graph, then 
 

        



ji

ww
ji

w jiDtrntGDEjiDtr 22 ,2,2 .                                                (16) 

 
Proof: From the definition of weighted distance energy, using Lemma 3.1 and Cauchy-
Schwartz inequality, we get 

  
2

2

1

2

1

nt

w i
i

nt

i
i

DE G

nt









 
  
 






 

       



ji

w jiDtrnt 2,2 .                                            (17) 

 
 On the other hand, from the definition of weighted distance energy, we have 
 

  
2

2

1

nt

w i
i

DE G 


   
 
 2

1

nt

i
i




   

    



ji

w jiDtr 2,2 .                                  (18) 

 From (17) and (18), we get 
 

       



ji

ww
ji

w jiDtrntGDEjiDtr 22 ,2,2 , 
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so the proof is completed. 
 
Corollary 3.3. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
 

     



ji

ww
ji

w jiDnGDEjiD 22 ,2,2 . 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     22 ,, jiDjiDtr ww   for all i, j. Using Theorem 3.2 we get the required result. 
 
Corollary 3.4. If G be a simple connected unweighted graph, then 
 

     



ji

w
ji

jidnGDEjid 22 ,2,2 , 

 
where  jid ,  is the length of the shortest path from i to j. 
 
Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 3.3 we get the 

required result. 
 
Theorem 3.5. If G be a simple connected weighted graph, then 
 

        









 



2
1

2
1 21 μi,jDtrntμGDE

ji
ww .                                                             (19) 

 
Proof: By the definition of weighted distance energy and using Cauchy-Schwartz inequality 
and Lemma 3.1, we get 

    
2

2 2 2
1 1

2 1

1
nt nt

w i i
i i

DE G μ μ nt μ μ
 

          
   
   

                               









 



2
1

2,21 μjiDtrnt
ji

w  

 
and then 

       









 



2
1

2
1 21 μi,jDtrntμGDE

ji
ww . 

 
 Hence the theorem is proved. 
 
Corollary 3.6. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
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2
1

2
1 21 μi,jDnμGDE

ji
ww . 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     22 ,, jiDjiDtr ww   for all i, j. Using Theorem 3.5 we get the required result. 
 
Corollary 3.7. If G be a simple connected unweighted graph, then 
 

      









 



2
1

2
1 21 μi,jdnμGDE

ji
w , 

 

where  jid ,  is the length of the shortest path from i to j. 
 
Proof: For an unweighted graph,    jidjiDw ,,   for all i; j. Using Corollary 3.6 we get the 

required result. 
 
Theorem 3.8. If G be a simple connected weighted graph, then 
 

     GDEG,wWμ
n w1
2 ,                                                                                              (20) 

 
where   G,wWμ1  is the largest eigenvalue of  G,wW . 
 
Proof: Using Theorem 3.2 and Lemma 1.2, we get 

    
  

  
  

2 2

2

1 1

2
2

2
1 1

2
12

2

4

4

4

w w
i j

n n

w
i j

n n

w
i j

DE G tr D i, j

tr D i, j

n
tr D i, j

n

μ W G,w
n



 

 





 
  

 








 

and then 

    G,wWμ
n

GDEw 1
2

 . 

The proof is completed. 
 

Corollary 3.9. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 

   .2
G,wW

n
GDEw   

 

Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     G,wWG,wWμ 1 . Using Theorem 3.8 we get the required result. 
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Corollary 3.10. If G be a simple connected unweighted graph, then 

  W
n

GDEw
2

 , 

where W is the Wiener index for unweighted graphs. 
Proof: For an unweighted graph,   WG,wW  .Using Corollary 3.9 we get the required result. 
 
Theorem 3.11. If G be a simple connected weighted graph, then 
 

          ntw
ji

ww GDntnti,jDtrGDE
2

2 det12  


.                                                     (21) 

 
Proof: From the definition of weighted distance energy and using Lemma 3.1, we get 
 

 

  

2
2 2

1 1

2

2

   2 , .

nt nt

w i i i j
i i i j

w i j
i j i j

DE G μ μ μ μ

tr D i j μ μ

  

 

    
 

 

  

 
 

  
 Since for nonnegative numbers the geometric mean smaller than the arithmetic mean. 
Thus, we have 

      

    
 

        

    

       

2

1

1
2

1

12 12

1

2
2

1

2
2

1
2 , 1

1

2 , 1

2 , 1

2 , 1

2 , 1 det

w i j
i j i j

nt nt

w i j
i j i j

nt nt ntnt

w i
i j i

nt

nt
w i

i j i

nt
w w

i j

tr D i j nt nt μ μ
nt nt

tr D i j nt nt μ μ

tr D i j nt nt μ

tr D i j nt nt μ

tr D i j nt nt D G

 



 



 

 



 
      

 
    

 

 
    

 

  

  

 

 

 

 



. 

 
and then 

         ntw
ji

ww GDntnti,jDtrGDE
2

2 det12  


. 

 
Hence the theorem is proved. 
 
Corollary 3.12. If G be a simple connected weighted graph, where each edge weight ijw  is a 

positive number, then 
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        nw
ji

ww GDnni,jDGDE
2

2 det12  


. 

 
Proof: For number weighted graphs, where the edge weights ijw  are positive number, we 

have     22 ,, jiDjiDtr ww   for all i, j. Using Theorem 3.11 we get the required result. 
Corollary 3.13. If G be a simple connected unweighted graph, then 
 

        n

ji
w GDnni,jdGDE

2
2 det12  



, 

 
where  jid ,  is the length of the shortest path from i to j and  GD  is the distance matrix of 
G. 
 
Proof: For an unweighted graph,    GDGDw   and    jidjiDw ,,   for all i; j. Using 

Corollary 3.12 we get the required result. 
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