ORIGINAL PAPER

ON NANO SEMI ALPHA OPEN SETS

QAYS HATEM IMRAN¹

Manuscript received: 01.01.2017; Accepted paper: 29.03.2017; Published online: 30.06.2017.

Abstract. In this paper, we presented another concept of N-O.S. called NS_{α} -O.S. and studied their fundamental properties in nano topological spaces. We also present NS_{α} -interior and NS_{α} -closure and study some of their fundamental properties.

Mathematics Subject Classification (2010): 54A05, 54B05. *Keywords:* NS_{α} -0.S., NS_{α} -C.S., NS_{α} -interior and NS_{α} -closure.

1. INTRODUCTION

In 2000, G.B. Navalagi [1] presented the idea of semi- α -open sets in topological spaces. N.M. Ali [2] introduced new types of weakly open sets in topological spaces. M.L. Thivagar and C. Richard [3] gave nano topological space (or simply N. T. S.) on a subset \mathcal{M} of a universe which is defined regarding lower and upper approximations of \mathcal{M} . He studied about the weak forms of nano open sets (briefly N-O.S.), such as $N\alpha$ -O.S., Ns-O.S., and Np-O.S.. The objective of this paper is to present the idea of NS_{α} -O.S. and study their fundamental properties in nano topological spaces. We also present NS_{α} -interior and NS_{α} -closure and obtain some of its properties.

2. PRELIMINARIES

Throughout this paper, $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ (or simply \mathcal{U}) always mean a nano topological space on which no separation axioms are expected unless generally specified. The complement of a *N*-O.S. is called a nano closed set (briefly *N*-C.S.) in $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$). For a set \mathcal{C} in a nano topological space $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, $Ncl(\mathcal{C})$, $Nint(\mathcal{C})$ and $\mathcal{C}^{c} = \mathcal{U} - \mathcal{C}$ denote the nano closure of \mathcal{C} , the nano interior of \mathcal{C} and the nano complement of \mathcal{C} respectively.

Definition 2.1 [3]:

A subset C of an N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is said to be:

(i) A nano pre-open set (briefly Np-0.S.) if $C \subseteq Nint(Ncl(C))$. The complement of a Np-0.S. is called a nano pre-closed set (briefly Np-C.S.) in $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$. The family of all Np-0.S. (resp. Np-C.S.) of \mathcal{U} is denoted by $NpO(\mathcal{U}, \mathcal{M})$ (resp. $NpC(\mathcal{U}, \mathcal{M})$).

(ii) A nano semi-open set (briefly Ns-O.S.) if $C \subseteq Ncl(Nint(C))$. The complement of a Ns-O.S. is called a nano semi-closed set (briefly Ns-C.S.) in $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$. The family of all Ns-O.S. (resp. Ns-C.S.) of \mathcal{U} is denoted by $NsO(\mathcal{U}, \mathcal{M})$ (resp. $NsC(\mathcal{U}, \mathcal{M})$).

(iii) A nano α -open set (briefly $N\alpha$ -0. S.) if $\mathcal{C} \subseteq Nint(Ncl(Nint(\mathcal{C})))$. The complement of a $N\alpha$ -0. S. is called a nano α -closed set (briefly $N\alpha$ -C. S.) in $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$. The family of all $N\alpha$ -0. S. (resp. $N\alpha$ -C. S.) of \mathcal{U} is denoted by $N\alpha O(\mathcal{U}, \mathcal{M})$ (resp. $N\alpha C(\mathcal{U}, \mathcal{M})$).

¹ Muthanna University, College of Education for Pure Science, Department of Mathematics, Iraq. E-mail: <u>gays.imran@mu.edu.iq</u>.

Definition 2.2 [3]:

(i) The Np-interior of a set \mathcal{C} of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is the union of all Np-O.S. contained in \mathcal{C} and is denoted by $Npint(\mathcal{C})$.

(ii) The *Ns*-interior of a set C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is the union of all *Ns*-O.S. contained in C and is denoted by Nsint(C).

(iii) The $N\alpha$ -interior of a set C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is the union of all $N\alpha$ -O.S. contained in C and is denoted by $N\alpha int(C)$.

Definition 2.3 [3]:

(i) The *Np*-closure of a set \mathcal{C} of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is the intersection of all *Np*-C.S. that contain \mathcal{C} and is denoted by $Npcl(\mathcal{C})$.

(ii) The *Ns*-closure of a set C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is the intersection of all *Ns*-C.S. that contain C and is denoted by Nscl(C).

(iii) The $N\alpha$ -closure of a set C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is the intersection of all $N\alpha$ -C.S. that contain C and is denoted by $N\alpha cl(C)$.

Proposition 2.4 [3]:

In a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, then the following statements hold, and the equality of each statement are not true: (i) Every $N \cap S$ (resp. $N \cap S$) is a $N \cong O S$ (resp. $N \cong C S$)

(i) Every N-0. S. (resp. N-C. S.) is a $N\alpha$ -0. S. (resp. $N\alpha$ -C. S.).

(ii) Every $N\alpha$ -O.S. (resp. $N\alpha$ -C.S.) is a Ns-O.S. (resp. Ns-C.S.).

(iii) Every $N\alpha$ -O.S. (resp. $N\alpha$ -C.S.) is a Np-O.S. (resp. Np-C.S.).

Proposition 2.5 [3]:

A subset C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is a $N\alpha$ -O.S. iff C is a Ns-O.S. and Np-O.S.

Lemma 2.6:

(i) If *K* is a *N*-0. S., then *Nscl(K) = Nint(Ncl(K))*.
(ii) If *C* is a subset of a N. T. S. (*U*, τ_R(*M*)), then *Nsint(Ncl(C)) = Ncl(Nint(Ncl(C)))*.

3. NANO SEMI- α -OPEN SETS

In this section, we present and study the NS_{α} -O.S. and some of its properties.

Definition 3.1:

A subset \mathcal{C} of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is called nano semi- α -open set (briefly NS_{α} -0.S.) if there exists a $N\alpha$ -0.S. \mathcal{P} in \mathcal{U} such that $\mathcal{P} \subseteq \mathcal{C} \subseteq Ncl(\mathcal{P})$ or equivalently if $\mathcal{C} \subseteq Ncl(Naint(\mathcal{C}))$. The family of all NS_{α} -0.S. of \mathcal{U} is denoted by $NS_{\alpha}O(\mathcal{U}, \mathcal{M})$.

Definition 3.2:

The complement of NS_{α} -O.S. is called a nano semi- α -closed set (briefly NS_{α} -C.S.). The family of all NS_{α} -C.S. of \mathcal{U} is denoted by $NS_{\alpha}C(\mathcal{U}, \mathcal{M})$.

Example 3.3:

Let $\mathcal{U} = \{p, q, r, s\}$ with $\mathcal{U}/\mathcal{R} = \{\{p\}, \{r\}, \{q, s\}\}$ and $\mathcal{M} = \{p, q\}$. Let $\tau_{\mathcal{R}}(\mathcal{M}) = \{\phi, \{p\}, \{q, s\}, \{p, q, s\}, \mathcal{U}\}$ be a N.T.S.. The *N*-C.S. are $\mathcal{U}, \{q, r, s\}, \{p, r\}, \{r\}$ and ϕ . The family of all $N\alpha$ -O.S. of \mathcal{U} is: $N\alpha O(\mathcal{U}, \mathcal{M}) = \{\phi, \{p\}, \{q, s\}, \{p, q, s\}, \mathcal{U}\}$. The family of all $N\alpha$ -C.S. of \mathcal{U} is: $N\alpha C(\mathcal{U}, \mathcal{M}) = \{\mathcal{U}, \{q, r, s\}, \{p, r\}, \{r\}, \phi\}$. The family of all NS_{α} -O.S. of \mathcal{U} is: $NS_{\alpha}O(\mathcal{U}, \mathcal{M}) = N\alpha O(\mathcal{U}, \mathcal{M}) \cup \{\{p, r\}, \{q, r, s\}\}$. The family of all NS_{α} -C.S. of \mathcal{U} is: $NS_{\alpha}C(\mathcal{U}, \mathcal{M}) = N\alpha C(\mathcal{U}, \mathcal{M}) \cup \{\{q, s\}, \{p\}\}$.

Remark 3.4:

It is evident by definitions that in a N. T. S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, the following hold: (i) Every N-O. S. (resp. N-C. S.) is a NS_{α} -O. S. (resp. NS_{α} -C. S.). (ii) Every $N\alpha$ -O. S. (resp. $N\alpha$ -C. S.) is a NS_{α} -O. S. (resp. NS_{α} -C. S.).

The opposite of the above remark need not be true as appeared in the following examples.

Example 3.5:

In example (3.3), the set $\{p, r\}$ is a NS_{α} -O.S. but is not *N*-O.S. and not $N\alpha$ -O.S.. The set $\{q, s\}$ is a NS_{α} -C.S. but is not *N*-C.S. and not $N\alpha$ -C.S..

Remark 3.6:

The concepts of NS_{α} -0. S. and Np-0. S. are independent, as the following example shows.

Example 3.7:

In example (3.3), then the set $\{p, r\}$ is a NS_{α} -O.S. but is not Np-O.S.. The set $\{p, r, s\}$ is a Np-O.S. but is not NS_{α} -O.S..

Remark 3.8:

(i) If every N-O.S. is a N-C.S. and every nowhere nano dense set is N-C.S. in any N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, then every NS_{α} -O.S. is a N-O.S..

(ii) If every N-0. S. is a N-C. S. in any N. T. S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, then every NS_{α} -0. S. is a $N\alpha$ -0. S..

Remark 3.9:

(i) It is clear that every Ns-0.S. and Np-0.S. of any N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is a NS_{α} -0.S. (by proposition (2.5) and remark (3.4) (ii)).

(ii) A NS_{α} -0.S. in any N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ is a Np-0.S. if every N-0.S. of \mathcal{U} is a N-C.S. (from proposition (2.4) (iii) and remark (3.8) (ii)).

Theorem 3.10:

For any subset C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M})), C \in N\alpha O(\mathcal{U}, \mathcal{M})$ iff there exists a *N*-O.S. \mathcal{K} such that $\mathcal{K} \subseteq C \subseteq Nint(Ncl(\mathcal{K}))$.

Proof: Let C be a $N\alpha$ -O.S.. Hence $C \subseteq Nint(Ncl(Nint(C)))$, so let $\mathcal{K} = Nint(C)$, we get $Nint(C) \subseteq C \subseteq Nint(Ncl(Nint(C)))$. Then there exists a N-O.S. Nint(C) such that $\mathcal{K} \subseteq C \subseteq Nint(Ncl(\mathcal{K}))$, where $\mathcal{K} = Nint(C)$.

Conversely, suppose that there is a *N*-0. S. \mathcal{K} such that $\mathcal{K} \subseteq \mathcal{C} \subseteq Nint(Ncl(\mathcal{K}))$. To prove $\mathcal{C} \in N\alpha O(\mathcal{U}, \mathcal{M})$. $\mathcal{K} \subseteq Nint(\mathcal{C})$ (since $Nint(\mathcal{C})$ is the largest *N*-0. S. contained in \mathcal{C}). Hence $Ncl(\mathcal{K}) \subseteq Nint(Ncl(\mathcal{C}))$, then $Nint(Ncl(\mathcal{K})) \subseteq Nint(Ncl(Nint(\mathcal{C})))$. But $\mathcal{K} \subseteq \mathcal{C} \subseteq Nint(Ncl(\mathcal{K}))$ (by hypothesis). Then $\mathcal{C} \subseteq Nint(Ncl(Nint(\mathcal{C})))$. Therefore, $\mathcal{C} \in N\alpha O(\mathcal{U}, \mathcal{M})$.

Theorem 3.11:

For any subset C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$. The following properties are equivalent: (i) $C \in NS_{\alpha}O(\mathcal{U}, \mathcal{M})$. (ii) There exists a *N*-0.S. say \mathcal{K} such that $\mathcal{K} \subseteq C \subseteq Ncl(Nint(Ncl(\mathcal{K})))$. (iii) $C \subseteq Ncl(Nint(Ncl(Nint(C))))$.

Proof:

 $(i) \Rightarrow (ii)$ Let $\mathcal{C} \in NS_{\alpha}\mathcal{O}(\mathcal{U}, \mathcal{M})$. Then there exists $\mathcal{P} \in N\alpha\mathcal{O}(\mathcal{U}, \mathcal{M})$, such that $\mathcal{P} \subseteq \mathcal{C} \subseteq \mathcal{C}$ $Ncl(\mathcal{P})$. Hence there exists \mathcal{K} N-O.S. such that $\mathcal{K} \subseteq \mathcal{P} \subseteq Nint(Ncl(\mathcal{K}))$ (by theorem (3.10)). Therefore, $Ncl(\mathcal{K}) \subseteq Ncl(\mathcal{P}) \subseteq Ncl(Nint(Ncl(\mathcal{K}))))$, implies that $Ncl(\mathcal{P}) \subseteq$ $Ncl(Nint(Ncl(\mathcal{K})))$. Then $\mathcal{K} \subseteq \mathcal{P} \subseteq \mathcal{C} \subseteq Ncl(\mathcal{P}) \subseteq Ncl(Nint(Ncl(\mathcal{K})))$. Therefore, $\mathcal{K} \subseteq \mathcal{C} \subseteq Ncl(Nint(Ncl(\mathcal{K}))))$, for some \mathcal{K} N-0.S.. $(ii) \Rightarrow (iii)$ Suppose that there exists a N-0. S. \mathcal{K} such that $\mathcal{K} \subseteq \mathcal{C} \subseteq Ncl(Nint(Ncl(\mathcal{K}))))$. We know that $Nint(\mathcal{C}) \subseteq \mathcal{C}$. On the other hand, $\mathcal{K} \subseteq Nint(\mathcal{C})$ (since $Nint(\mathcal{C})$ is the largest N-0.S. contained in C). Hence $Ncl(\mathcal{K}) \subseteq Ncl(Nint(C))$, then $Nint(Ncl(\mathcal{K})) \subseteq$ $Nint(Ncl(Nint(\mathcal{C})))$, therefore $Ncl(Nint(Ncl(\mathcal{K}))) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C}))))$. But $\mathcal{C} \subseteq Ncl(Nint(Ncl(\mathcal{K})))$ (by hypothesis). Hence $\mathcal{C} \subseteq Ncl(Nint(Ncl(\mathcal{K}))) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C})))))$, then $\mathcal{C} \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C})))))$. $(iii) \Rightarrow (i)$ Let $\mathcal{C} \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C}))))$. To prove $\mathcal{C} \in NS_{\alpha}\mathcal{O}(\mathcal{U}, \mathcal{M})$. Let $\mathcal{P} = Nint(\mathcal{C})$; we know that $Nint(\mathcal{C}) \subseteq \mathcal{C}$. To prove $\mathcal{C} \subseteq Ncl(Nint(\mathcal{C}))$. Since $Nint(Ncl(Nint(\mathcal{C}))) \subseteq Ncl(Nint(\mathcal{C}))$. Hence, $Ncl(Nint(Ncl(Nint(\mathcal{C})))) \subseteq Ncl(Ncl(Nint(\mathcal{C})))) = Ncl(Nint(\mathcal{C})).$ But $\mathcal{C} \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C}))))$ (by hypothesis). Hence, $C \subseteq Ncl(Nint(Ncl(Nint(C)))) \subseteq Ncl(Nint(C)) \Rightarrow C \subseteq Ncl(Nint(C)).$ Hence, there exists a *N*-0. S. say \mathcal{P} , such that $\mathcal{P} \subseteq \mathcal{C} \subseteq Ncl(\mathcal{P})$. On the other hand, \mathcal{P} is a $N\alpha$ -0. S. (since \mathcal{P} is a N-0. S.). Hence $\mathcal{C} \in NS_{\alpha}\mathcal{O}(\mathcal{U}, \mathcal{M})$.

Corollary 3.12:

For any subset C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, the following properties are equivalent: (i) $C \in NS_{\alpha}C(\mathcal{U}, \mathcal{M})$. (ii) There exists a *N*-C.S. \mathcal{F} such that $Nint(Ncl(Nint(\mathcal{F}))) \subseteq C \subseteq \mathcal{F}$. (iii) $Nint(Ncl(Nint(Ncl(C)))) \subseteq C$.

Proof:

 $(i) \Rightarrow (ii)$ Let $\mathcal{C} \in NS_{\alpha}\mathcal{C}(\mathcal{U}, \mathcal{M})$, then $\mathcal{C}^{c} \in NS_{\alpha}\mathcal{O}(\mathcal{U}, \mathcal{M})$. Hence there is \mathcal{K} N-0.S. such that $\mathcal{K} \subseteq \mathcal{C}^{c} \subseteq Ncl(Nint(Ncl(\mathcal{K})))$ (by theorem (3.11)). Hence $(Ncl(Nint(Ncl(\mathcal{K}))))^{c} \subseteq \mathcal{C}^{c^{c}} \subseteq \mathcal{K}^{c}$, i.e., $Nint(Ncl(Nint(\mathcal{K}^{c}))) \subseteq \mathcal{C} \subseteq \mathcal{K}^{c}$. Let $\mathcal{K}^{c} = \mathcal{F}$, where \mathcal{F} is a N-C.S. in \mathcal{U} . Then $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{C} \subseteq \mathcal{F}$, for some \mathcal{F} N-C.S..

 $(ii) \Rightarrow (iii)$ Suppose that there exists \mathcal{F} *N*-C. S. such that $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{C} \subseteq \mathcal{F}$, but $Ncl(\mathcal{C})$ is the smallest *N*-C. S. containing \mathcal{C} . Then $Ncl(\mathcal{C}) \subseteq \mathcal{F}$, and therefore:

$$\begin{split} \operatorname{Nint}(\operatorname{Ncl}(\mathcal{C})) &\subseteq \operatorname{Nint}(\mathcal{F}) \Longrightarrow \operatorname{Ncl}\left(\operatorname{Nint}(\operatorname{Ncl}(\mathcal{C}))\right) \subseteq \operatorname{Ncl}(\operatorname{Nint}(\mathcal{F})) \Longrightarrow \\ \operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\mathcal{C})))) \subseteq \operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{F}))) \subseteq \mathcal{C} \Longrightarrow \\ \operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\mathcal{C})))) \subseteq \mathcal{C}. \\ (iii) &\Rightarrow (i) \operatorname{Let} \operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\mathcal{C})))) \subseteq \mathcal{C}. \text{ To prove } \mathcal{C} \in \operatorname{NS}_{\alpha}\mathcal{C}(\mathcal{U}, \mathcal{M}), \\ \text{i.e., to prove } \mathcal{C}^c \in \operatorname{NS}_{\alpha}\mathcal{O}(\mathcal{U}, \mathcal{M}). \\ \\ \operatorname{Then} \mathcal{C}^c \subseteq (\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\mathcal{C}))))^c = \operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{C}^c)))), \text{ but} \\ (\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\mathcal{C}))))^c = \operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{C}^c)))). \\ \\ \operatorname{Hence} \mathcal{C}^c \subseteq \operatorname{Ncl}(\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Nint}(\mathcal{C}^c)))), \text{ and therefore } \mathcal{C}^c \in \operatorname{NS}_{\alpha}\mathcal{O}(\mathcal{U}, \mathcal{M}), \\ \text{i.e., } \mathcal{C} \in \operatorname{NS}_{\alpha}\mathcal{C}(\mathcal{U}, \mathcal{M}). \end{split}$$

Proposition 3.13:

The union of any family of $N\alpha$ -O.S. is a $N\alpha$ -O.S.

Proof: Let {*C*_{*i*}}_{*i*∈Λ} be a family of *N*α-0. S. of *U*. To prove $\bigcup_{i \in \Lambda} C_i$ is a *N*α-0. S., i.e., $\bigcup_{i \in \Lambda} C_i \subseteq Nint(Ncl(Nint(\bigcup_{i \in \Lambda} C_i)))$. Then $C_i \subseteq Nint(Ncl(Nint(C_i)))$, $\forall i \in \Lambda$. Since $\bigcup_{i \in \Lambda} Nint(C_i) \subseteq Nint(\bigcup_{i \in \Lambda} C_i)$ and $\bigcup_{i \in \Lambda} Ncl(C_i) \subseteq Ncl(\bigcup_{i \in \Lambda} C_i)$ hold for any nano topology. We have $\bigcup_{i \in \Lambda} C_i \subseteq \bigcup_{i \in \Lambda} Nint(Ncl(Nint(C_i)))$ $\subseteq Nint(\bigcup_{i \in \Lambda} Ncl(Nint(C_i)))$ $\subseteq Nint(U_{i \in \Lambda} (Nint(C_i)))$ $\subseteq Nint(Ncl(\bigcup_{i \in \Lambda} C_i))$.

Hence $\bigcup_{i \in \Lambda} C_i$ is a $N\alpha$ -0. S..

Theorem 3.14:

The union of any family of NS_{α} -0. S. is a NS_{α} -0. S..

Proof: Let $\{C_i\}_{i\in\Lambda}$ be a family of NS_{α} -0. S.. To prove $\bigcup_{i\in\Lambda} C_i$ is a NS_{α} -0. S.. Since $C_i \in NS_{\alpha}O(\mathcal{U}, \mathcal{M})$. Then there is a $N\alpha$ -0. S. \mathcal{D}_i such that $\mathcal{D}_i \subseteq C_i \subseteq Ncl(\mathcal{D}_i), \forall i \in \Lambda$. Hence $\bigcup_{i\in\Lambda} \mathcal{D}_i \subseteq \bigcup_{i\in\Lambda} C_i \subseteq \bigcup_{i\in\Lambda} Ncl(\mathcal{D}_i) \subseteq Ncl(\bigcup_{i\in\Lambda} \mathcal{D}_i)$. But $\bigcup_{i\in\Lambda} \mathcal{D}_i \in N\alpha O(\mathcal{U}, \mathcal{M})$ (by proposition (3.13)). Hence $\bigcup_{i\in\Lambda} C_i \in NS_{\alpha}O(\mathcal{U}, \mathcal{M})$.

Corollary 3.15:

The intersection of any family of NS_{α} -C.S. is a NS_{α} -C.S.

Proof: This follows directly from the theorem (3.14).

Remark 3.16:

The intersection of any two NS_{α} -0. S. is not necessary NS_{α} -0. S. as in the following example.

Example 3.17:

In example (3.3), $\{p, r\}$ and $\{q, r, s\}$ are two NS_{α} -0. S., but $\{p, r\} \cap \{q, r, s\} = \{r\}$ is not NS_{α} -0. S..

Remark 3.18:

The following diagram shows the relations among the different types of weakly N-O.S. that were studied in this section:

4. NANO SEMI-α-INTERIOR AND NANO SEMI-α-CLOSURE

We present NS_{α} -interior and NS_{α} -closure and obtain some of its properties in this section.

Definition 4.1:

The union of all NS_{α} -0. S. in a N. T. S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ contained in \mathcal{C} is called NS_{α} -interior of \mathcal{C} and is denoted by $NS_{\alpha}int(\mathcal{C})$, $NS_{\alpha}int(\mathcal{C}) = \bigcup \{\mathcal{D} : \mathcal{D} \subseteq \mathcal{C}, \mathcal{D} \text{ is a } NS_{\alpha}$ -0. S. $\}$.

Definition 4.2:

The intersection of all NS_{α} -C.S. in a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$ containing \mathcal{C} is called NS_{α} -closure of \mathcal{C} and is denoted by $NS_{\alpha}cl(\mathcal{C}), NS_{\alpha}cl(\mathcal{C}) = \bigcap \{\mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a } NS_{\alpha}\text{-C.S.} \}.$

Proposition 4.3:

Let C be any set in a N. T. S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, the following properties are true: (i) $NS_{\alpha}int(\mathcal{C}) = C$ iff C is a NS_{α} -0. S.. (ii) $NS_{\alpha}cl(\mathcal{C}) = C$ iff C is a NS_{α} -C. S.. (iii) $NS_{\alpha}int(\mathcal{C})$ is the largest NS_{α} -O. S. contained in C. (iv) $NS_{\alpha}cl(\mathcal{C})$ is the smallest NS_{α} -C. S. containing C. *Proof:* (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let C be any set in a N. T. S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, the following properties are true: (i) $NS_{\alpha}int(\mathcal{U}-\mathcal{C}) = \mathcal{U} - (NS_{\alpha}cl(\mathcal{C}))$, (ii) $NS_{\alpha}cl(\mathcal{U}-\mathcal{C}) = \mathcal{U} - (NS_{\alpha}int(\mathcal{C}))$. Proof: (i) By definition, $NS_{\alpha}cl(\mathcal{C}) = \bigcap \{\mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a } NS_{\alpha}\text{-C.S.} \}$ $\mathcal{U} - (NS_{\alpha}cl(\mathcal{C})) = \mathcal{U} - \bigcap \{\mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a } NS_{\alpha}\text{-C.S.} \}$ $= \bigcup \{\mathcal{U} - \mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D} \text{ is a } NS_{\alpha}\text{-C.S.} \}$ $= \bigcup \{\mathcal{H}: \mathcal{H} \subseteq \mathcal{U} - \mathcal{C}, \mathcal{H} \text{ is a } NS_{\alpha}\text{-O.S.} \}$ $= NS_{\alpha}int(\mathcal{U}-\mathcal{C}).$ (ii) The proof is similar to (i).

Theorem 4.5:

Let C and D be two sets in a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$. The following properties hold: (i) $NS_{\alpha}int(\phi) = \phi$, $NS_{\alpha}int(\mathcal{U}) = \mathcal{U}$. (ii) $NS_{\alpha}int(\mathcal{C}) \subseteq C$. (iii) $C \subseteq \mathcal{D} \Rightarrow NS_{\alpha}int(\mathcal{C}) \subseteq NS_{\alpha}int(\mathcal{D})$. (iv) $NS_{\alpha}int(\mathcal{C}\cap \mathcal{D}) \subseteq NS_{\alpha}int(\mathcal{C})\cap NS_{\alpha}int(\mathcal{D})$. (v) $NS_{\alpha}int(\mathcal{C})\cup NS_{\alpha}int(\mathcal{D}) \subseteq NS_{\alpha}int(\mathcal{C}\cup\mathcal{D})$. (v) $NS_{\alpha}int(\mathcal{N}) \subseteq NS_{\alpha}int(\mathcal{C})$.

Proof: (i), (ii), (iii), (iv), (v) and (vi) are obvious.

The equality in (iv) and (v) is not true in general, as the following example shows:

Example 4.6:

Let $\mathcal{U} = \{p, q, r, s\}$ with $\mathcal{U}/\mathcal{R} = \{\{q\}, \{r\}, \{p, s\}\}$ and $\mathcal{M} = \{p, r\}$. Let $\tau_{\mathcal{R}}(\mathcal{M}) = \{\phi, \{r\}, \{p, s\}, \{p, r, s\}, \mathcal{U}\}$ be a N.T.S.. The N-C.S. are $\mathcal{U}, \{p, q, s\}, \{q, r\}, \{q\}$ and ϕ . The family of all $N\alpha$ -O.S. of \mathcal{U} is: $N\alpha O(\mathcal{U}, \mathcal{M}) = \{\phi, \{r\}, \{p, s\}, \{p, r, s\}, \mathcal{U}\}$. The family of all NS_{α} -O.S. of \mathcal{U} is: $NS_{\alpha}O(\mathcal{U}, \mathcal{M}) = N\alpha O(\mathcal{U}, \mathcal{M}) \cup \{\{q, r\}, \{p, q, s\}\}$. Let $\mathcal{C} = \{q, r\}, \mathcal{D} = \{p, q, s\}$. Then $NS_{\alpha}int(\mathcal{C}) = \{q, r\}, NS_{\alpha}int(\mathcal{D}) = \{p, q, s\}, \mathcal{C}\cap\mathcal{D} = \{q\}, NS_{\alpha}int(\mathcal{C}\cap\mathcal{D}) = \phi$ and $NS_{\alpha}int(\mathcal{C})\cap NS_{\alpha}int(\mathcal{D}) = \{q\}$. It is clear that $NS_{\alpha}int(\mathcal{C})\cap NS_{\alpha}int(\mathcal{D}) \not\subseteq NS_{\alpha}int(\mathcal{C}\cap\mathcal{D})$. Let $\mathcal{C} = \{p, s\}, \mathcal{D} = \{q, s\}$. Then $NS_{\alpha}int(\mathcal{C}) = \{p, s\}, NS_{\alpha}int(\mathcal{D}) = \phi, \mathcal{C}\cup\mathcal{D} = \{p, q, s\}, NS_{\alpha}int(\mathcal{C}\cup\mathcal{D}) = \{p, q, s\}$ and $NS_{\alpha}int(\mathcal{C})\cup NS_{\alpha}int(\mathcal{D}) = \{p, s\}$. It is clear that $NS_{\alpha}int(\mathcal{C}\cup\mathcal{D}) \not\subseteq NS_{\alpha}int(\mathcal{C})\cup NS_{\alpha}int(\mathcal{D}) = \{p, s\}$. It is clear that $NS_{\alpha}int(\mathcal{C}\cup\mathcal{D}) \not\subseteq NS_{\alpha}int(\mathcal{C})\cup NS_{\alpha}int(\mathcal{D})$.

Theorem 4.7:

Let C and D be two sets in a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$. The following properties hold: (i) $NS_{\alpha}cl(\phi) = \phi$, $NS_{\alpha}cl(\mathcal{U}) = \mathcal{U}$. (ii) $C \subseteq NS_{\alpha}cl(C)$. (iii) $C \subseteq D \Rightarrow NS_{\alpha}cl(C) \subseteq NS_{\alpha}cl(D)$. (iv) $NS_{\alpha}cl(C\cap D) \subseteq NS_{\alpha}cl(C)\cap NS_{\alpha}cl(D)$. (v) $NS_{\alpha}cl(C)\cup NS_{\alpha}cl(D) \subseteq NS_{\alpha}cl(C\cup D)$. (vi) $NS_{\alpha}cl(NS_{\alpha}cl(C)) = NS_{\alpha}cl(C)$.

Proof: (i) and (ii) are evident.

(iii) By part (ii), $\mathcal{D} \subseteq NS_{\alpha}cl(\mathcal{D})$. Since $\mathcal{C} \subseteq \mathcal{D}$, we have $\mathcal{C} \subseteq NS_{\alpha}cl(\mathcal{D})$. But $NS_{\alpha}cl(\mathcal{D})$ is a NS_{α} -C.S. Thus Ngsg- $cl(\mathcal{D})$ is a NS_{α} -C.S. containing \mathcal{C} . Since $NS_{\alpha}cl(\mathcal{C})$ is the smallest NS_{α} -C.S. containing \mathcal{C} , we have $NS_{\alpha}cl(\mathcal{C}) \subseteq NS_{\alpha}cl(\mathcal{D})$. Hence, $\mathcal{C} \subseteq \mathcal{D} \Longrightarrow NS_{\alpha}cl(\mathcal{C}) \subseteq NS_{\alpha}cl(\mathcal{D})$.

(iv) We know that $C \cap D \subseteq C$ and $C \cap D \subseteq D$. Therefore, by part (iii), $NS_{\alpha}cl(C \cap D) \subseteq NS_{\alpha}cl(C)$ and $S_{\alpha}cl(C \cap D) \subseteq NS_{\alpha}cl(D)$. Hence $NS_{\alpha}cl(C \cap D) \subseteq NS_{\alpha}cl(D) \cap NS_{\alpha}cl(D)$.

(v) Since $C \subseteq C \cup D$ and $D \subseteq C \cup D$, it follows from part (iii) that $NS_{\alpha}cl(C) \subseteq NS_{\alpha}cl(C \cup D)$ and $NS_{\alpha}cl(D) \subseteq NS_{\alpha}cl(C \cup D)$. Hence $NS_{\alpha}cl(C) \cup NS_{\alpha}cl(D) \subseteq NS_{\alpha}cl(C \cup D)$.

(vi) Since $NS_{\alpha}cl(\mathcal{C})$ is a NS_{α} -C.S., we have by proposition (4.3) part (ii), $S_{\alpha}cl(NS_{\alpha}cl(\mathcal{C})) = NS_{\alpha}cl(\mathcal{C})$.

The equality in (iv) and (v) is not true in general, as the following example shows:

Example 4.8:

 $N\alpha$ -C.S. of \mathcal{U} is: $N\alpha C(\mathcal{U},\mathcal{M}) =$ In example (4.6), the family of all The family of $\{\mathcal{U}, \{p, q, s\}, \{q, r\}, \{q\}, \phi\}.$ all NS_{α} -C.S. of U is: $NS_{\alpha}C(\mathcal{U},\mathcal{M}) = N\alpha C(\mathcal{U},\mathcal{M}) \cup \{\{p,s\},\{r\}\}.$ Let $\mathcal{C} = \{p,r\}, \mathcal{D} = \{q,r\}.$ Then $NS_{\alpha}cl(\mathcal{C}) = \{q,r\}$. $\mathcal{U}, NS_{\alpha}cl(\mathcal{D}) = \{q, r\}, \mathcal{C} \cap \mathcal{D} = \{r\}, NS_{\alpha}cl(\mathcal{C} \cap \mathcal{D}) = \{r\} \text{ and } NS_{\alpha}cl(\mathcal{C}) \cap NS_{\alpha}cl(\mathcal{D}) = \{q, r\}.$ It is clear that $NS_{\alpha}cl(\mathcal{C}) \cap NS_{\alpha}cl(\mathcal{D}) \not\subseteq NS_{\alpha}cl(\mathcal{C} \cap \mathcal{D})$. $NS_{\alpha}cl(\mathcal{C}) = \{p, s\}, NS_{\alpha}cl(\mathcal{D}) = \{r\}, \mathcal{C}\cup\mathcal{D} = \{p, r, s\},\$ Let $\mathcal{C} = \{p, s\}, \mathcal{D} = \{r\}.$ Then $NS_{\alpha}cl(\mathcal{C}\cup\mathcal{D}) = \mathcal{U}$ and $NS_{\alpha}cl(\mathcal{C})\cup NS_{\alpha}cl(\mathcal{D}) = \{p, r, s\}.$ It is clear that $NS_{\alpha}cl(\mathcal{C}\cup\mathcal{D}) \not\subseteq NS_{\alpha}cl(\mathcal{C})\cup NS_{\alpha}cl(\mathcal{D})$.

Proposition 4.9:

For any subset C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, then: (i) $Nint(C) \subseteq N\alpha int(C) \subseteq NS_{\alpha} int(C) \subseteq NS_{\alpha} cl(C) \subseteq N\alpha cl(C) \subseteq Ncl(C)$. (ii) $Nint(NS_{\alpha} int(C)) = NS_{\alpha} int(Nint(C)) = Nint(C)$. (iii) $N\alpha int(NS_{\alpha} int(C)) = NS_{\alpha} int(N\alpha int(C)) = N\alpha int(C)$. (iv) $Ncl(NS_{\alpha} cl(C)) = NS_{\alpha} cl(Ncl(C)) = Ncl(C)$. (v) $N\alpha cl(NS_{\alpha} cl(C)) = NS_{\alpha} cl(N\alpha cl(C)) = N\alpha cl(C)$. (vi) $NS_{\alpha} cl(C) = C \cup Nint(Ncl(Nint(Ncl(C))))$. (vii) $NS_{\alpha} int(C) = C \cap Ncl(Nint(Ncl(Nint(C))))$. (viii) $Nint(Ncl(C)) \subseteq NS_{\alpha} int(NS_{\alpha} cl(C))$.

Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii). (ii) To prove $Nint(NS_{\alpha}int(\mathcal{C})) = NS_{\alpha}int(Nint(\mathcal{C})) = Nint(\mathcal{C}).$ Since $Nint(\mathcal{C})$ is a N-O.S., then $Nint(\mathcal{C})$ is a NS_{α} -O.S.. Hence $Nint(\mathcal{C}) = NS_{\alpha}int(Nint(\mathcal{C}))$ (by proposition (4.3)). Therefore: Since $Nint(\mathcal{C}) \subseteq NS_{\alpha}int(\mathcal{C}) \Rightarrow Nint(Nint(\mathcal{C})) \subseteq Nint(NS_{\alpha}int(\mathcal{C})) \Rightarrow$ $Nint(\mathcal{C}) \subseteq Nint(NS_{\alpha}int(\mathcal{C})).$ Also, $NS_{\alpha}int(\mathcal{C}) \subseteq \mathcal{C} \Longrightarrow Nint(NS_{\alpha}int(\mathcal{C})) \subseteq Nint(\mathcal{C})$. Hence: $Nint(\mathcal{C}) = Nint(NS_a int(\mathcal{C}))....(2)$ Therefore by (1) and (2), we get $Nint(NS_{\alpha}int(\mathcal{C})) = NS_{\alpha}int(Nint(\mathcal{C})) = Nint(\mathcal{C}).$ (iii) To prove $N\alpha int(NS_{\alpha}int(\mathcal{C})) = NS_{\alpha}int(N\alpha int(\mathcal{C})) = N\alpha int(\mathcal{C}).$ Since $N\alpha int(\mathcal{C})$ is $N\alpha$ -0. S., therefore $N\alpha int(\mathcal{C})$ is NS_{α} -0. S.. Therefore by proposition (4.3): $N\alpha int(\mathcal{C}) = NS_{\alpha} int(N\alpha int(\mathcal{C}))....(1)$ Now, to prove $N \alpha int(\mathcal{C}) = N \alpha int(NS_{\alpha} int(\mathcal{C}))$. Since $N\alpha int(\mathcal{C}) \subseteq NS_{\alpha} int(\mathcal{C}) \Rightarrow N\alpha int(N\alpha int(\mathcal{C})) \subseteq N\alpha int(NS_{\alpha} int(\mathcal{C})) \Rightarrow$ $N\alpha int(\mathcal{C}) \subseteq N\alpha int(NS_{\alpha} int(\mathcal{C})).$ Also, $NS_{\alpha}int(\mathcal{C}) \subseteq \mathcal{C} \Longrightarrow N\alpha int(NS_{\alpha}int(\mathcal{C})) \subseteq N\alpha int(\mathcal{C})$. Hence: $N\alpha int(\mathcal{C}) = N\alpha int(NS_{\alpha} int(\mathcal{C}))....(2)$ Therefore by (1) and (2), we get $N\alpha int(NS_{\alpha}int(\mathcal{C})) = NS_{\alpha}int(N\alpha int(\mathcal{C})) = N\alpha int(\mathcal{C})$. (iv) To prove $Ncl(NS_{\alpha}cl(\mathcal{C})) = NS_{\alpha}cl(Ncl(\mathcal{C})) = Ncl(\mathcal{C}).$ We know that $Ncl(\mathcal{C})$ is a N-C. S., so it is NS_{α} -C. S.. Hence by proposition (4.3), we have: $Ncl(\mathcal{C}) = NS_{\alpha}cl(Ncl(\mathcal{C})).$ (1)

To prove $Ncl(\mathcal{C}) = Ncl(NS_{\alpha}cl(\mathcal{C}))$. Since $NS_{\alpha}cl(\mathcal{C}) \subseteq Ncl(\mathcal{C})$ (by part (i)). Then $Ncl(NS_{\alpha}cl(\mathcal{C})) \subseteq Ncl(Ncl(\mathcal{C})) = Ncl(\mathcal{C}) \Longrightarrow Ncl(NS_{\alpha}cl(\mathcal{C})) \subseteq Ncl(\mathcal{C}).$ Since $C \subseteq NS_{\alpha}cl(C) \subseteq Ncl(NS_{\alpha}cl(C))$, then $C \subseteq Ncl(NS_{\alpha}cl(C))$. Hence $Ncl(C) \subseteq$ $Ncl(Ncl(NS_{\alpha}cl(\mathcal{C}))) = Ncl(NS_{\alpha}cl(\mathcal{C})) \Longrightarrow Ncl(\mathcal{C}) \subseteq Ncl(NS_{\alpha}cl(\mathcal{C}))$ and therefore: $Ncl(\mathcal{C}) = Ncl(NS_{\alpha}cl(\mathcal{C}))....(2)$ Now, by (1) and (2), we get that $Ncl(NS_{\alpha}cl(\mathcal{C})) = NS_{\alpha}cl(Ncl(\mathcal{C}))$. Hence $Ncl(NS_{\alpha}cl(\mathcal{C})) = NS_{\alpha}cl(Ncl(\mathcal{C})) = Ncl(\mathcal{C}).$ (vii) To prove $NS_{\alpha}int(\mathcal{C}) = \mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C})))).$ Since $NS_{\alpha}int(\mathcal{C}) \in NS_{\alpha}O(\mathcal{U}, \mathcal{M}) \Longrightarrow NS_{\alpha}int(\mathcal{C}) \subseteq Ncl(Nint(Ncl(Nint(NS_{\alpha}int(\mathcal{C})))))$ $= Ncl(Nint(Ncl(Nint(\mathcal{C}))))$ (by part (ii)). Hence $NS_{\alpha}int(\mathcal{C}) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C}))))$, also $NS_{\alpha}int(\mathcal{C}) \subseteq \mathcal{C}$. Then: $NS_{a}int(\mathcal{C}) \subseteq \mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C}))))$(1) To prove $\mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C}))))$ is a NS_{α} -O.S. contained in \mathcal{C} . It is clear that $\mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C})))) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C}))))$ and also it is clear that $Nint(\mathcal{C}) \subseteq Ncl(Nint(\mathcal{C})) \Longrightarrow Nint(Nint(\mathcal{C})) \subseteq Nint(Ncl(Nint(\mathcal{C})))$ \Rightarrow Nint(\mathcal{C}) \subseteq Nint(Ncl(Nint(\mathcal{C}))) \Rightarrow Ncl(Nint(\mathcal{C})) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C}))) and $Nint(\mathcal{C}) \subseteq Ncl(Nint(\mathcal{C})) \Longrightarrow Nint(\mathcal{C}) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C}))))$ and $Nint(\mathcal{C}) \subseteq \mathcal{C}$ $\Rightarrow Nint(\mathcal{C}) \subseteq \mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C})))).$ We get $Nint(\mathcal{C}) \subseteq \mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C})))) \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C})))).$ Hence $\mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C}))))$ is a NS_{α} -0. S. (by proposition (4.3)). Also, $C \cap Ncl(Nint(Ncl(Nint(C))))$ is contained in C. Then $C \cap Ncl(Nint(Ncl(Nint(C))))$ $\subseteq NS_{\alpha}int(\mathcal{C})$ (since $NS_{\alpha}int(\mathcal{C})$ is the largest NS_{α} -0. S. contained in \mathcal{C}). Hence: $\mathcal{C}\cap Ncl(Nint(Ncl(Nint(\mathcal{C})))) \subseteq NS_{\alpha}int(\mathcal{C})....(2)$ By (1) and (2), $NS_{\alpha}int(\mathcal{C}) = \mathcal{C} \cap Ncl(Nint(Ncl(Nint(\mathcal{C})))).$ (viii) To prove that $Nint(Ncl(\mathcal{C})) \subseteq NS_{\alpha}int(NS_{\alpha}cl(\mathcal{C}))$. Since $NS_{\alpha}cl(\mathcal{C})$ is a NS_{α} -C.S., therefore $Nint(Ncl(Nint(Ncl(NS_{\alpha}cl(\mathcal{C}))))) \subseteq NS_{\alpha}cl(\mathcal{C})$ (by corollary (3.12)). Hence $Nint(Ncl(\mathcal{C})) \subseteq Nint(Ncl(Nint(Ncl(\mathcal{C})))) \subseteq NS_{\alpha}cl(\mathcal{C})$ (by part (iv)). Therefore, $NS_{\alpha}int(Nint(Ncl(\mathcal{C}))) \subseteq NS_{\alpha}int(NS_{\alpha}cl(\mathcal{C})) \Rightarrow$ $Nint(Ncl(\mathcal{C})) \subseteq NS_{\alpha}int(NS_{\alpha}cl(\mathcal{C}))$ (by part (ii)).

Theorem 4.10:

For any subset C of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$. The following properties are equivalent: (i) $C \in NS_{\alpha}O(\mathcal{U}, \mathcal{M})$. (ii) $\mathcal{K} \subseteq C \subseteq Ncl(Nint(Ncl(\mathcal{K})))$, for some N-0.S. \mathcal{K} . (iii) $\mathcal{K} \subseteq C \subseteq Nsint(Ncl(\mathcal{K}))$, for some N-0.S. \mathcal{K} . (iv) $C \subseteq Nsint(Ncl(Nint(C)))$.

Proof:

 $\begin{array}{l} (i) \xrightarrow{\circ} (ii) \text{ Let } \mathcal{C} \in NS_{\alpha}\mathcal{O}(\mathcal{U},\mathcal{M}), \text{ then } \mathcal{C} \subseteq Ncl(Nint(Ncl(Nint(\mathcal{C})))) \text{ and } Nint(\mathcal{C}) \subseteq \mathcal{C}. \\ \text{Hence } \mathcal{K} \subseteq \mathcal{C} \subseteq Ncl(Nint(Ncl(\mathcal{K}))), \text{ where } \mathcal{K} = Nint(\mathcal{C}). \\ (ii) \Rightarrow (iii) \text{ Suppose } \mathcal{K} \subseteq \mathcal{C} \subseteq Ncl(Nint(Ncl(\mathcal{K}))), \text{ for some } N\text{-}0.S. \mathcal{K}. \\ \text{But } Nsint(Ncl(\mathcal{K})) = Ncl(Nint(Ncl(\mathcal{K}))) \text{ (by lemma } (2.6)). \\ \text{Then } \mathcal{K} \subseteq \mathcal{C} \subseteq Nsint(Ncl(\mathcal{K})), \text{ for some } N\text{-}0.S. \mathcal{K}. \\ (iii) \Rightarrow (iv) \text{ Suppose that } \mathcal{K} \subseteq \mathcal{C} \subseteq Nsint(Ncl(\mathcal{K})), \text{ for some } N\text{-}0.S. \mathcal{K}. \\ \text{Since } \mathcal{K} \text{ is a } N\text{-}0.S. \text{ contained in } \mathcal{C}. \text{ Then } \mathcal{K} \subseteq Ncl(\mathcal{K}) \subseteq Ncl(Nint(\mathcal{C})) \\ \Rightarrow Nsint(Ncl(\mathcal{K})) \subseteq Nsint(Ncl(Nint(\mathcal{C}))). \text{ But } \mathcal{C} \subseteq Nsint(Ncl(\mathcal{K})) \text{ (by hypothesis)}, \end{array}$

then $C \subseteq Nsint(Ncl(Nint(C)))$. $(iv) \Rightarrow (i) \text{ Let } C \subseteq Nsint(Ncl(Nint(C)))$. But Nsint(Ncl(Nint(C))) = Ncl(Nint(Ncl(Nint(C)))) (by lemma (2.6)). Hence $\subseteq Ncl(Nint(Ncl(Nint(C)))) \Rightarrow C \in NS_{\alpha}O(\mathcal{U}, \mathcal{M})$.

Corollary 4.11:

For any subset \mathcal{D} of a N.T.S. $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{M}))$, the following properties are equivalent: (i) $\mathcal{D} \in NS_{\alpha}C(\mathcal{U}, \mathcal{M})$. (ii) $Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{D} \subseteq \mathcal{F}$, for some \mathcal{F} N-C.S.. (iii) $Nscl(Nint(\mathcal{F})) \subseteq \mathcal{D} \subseteq \mathcal{F}$, for some \mathcal{F} N-C.S.. (iv) $Nscl(Nint(Ncl(\mathcal{D}))) \subseteq \mathcal{D}$.

Proof:

 $\begin{array}{l} (i) \Rightarrow (ii) \ \text{Let} \ \mathcal{D} \in NS_{\alpha}\mathcal{C}(\mathcal{U},\mathcal{M}) \Rightarrow Nint(Ncl(Nint(Ncl(\mathcal{D})))) \subseteq \mathcal{D} \ (by \ \text{corollary} \ (3.12)) \\ \text{and} \ \mathcal{D} \subseteq Ncl(\mathcal{D}). \ \text{Hence we get} \ Nint(Ncl(Nint(Ncl(\mathcal{D})))) \subseteq \mathcal{D} \subseteq Ncl(\mathcal{D}). \\ \hline \text{Therefore} \ Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{D} \subseteq \mathcal{F}, \ \text{where} \ \mathcal{F} = Ncl(\mathcal{D}). \\ (ii) \Rightarrow (iii) \ \text{Let} \ Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{D} \subseteq \mathcal{F}, \ \text{for some} \ \mathcal{F} \ N-C. \ S.. \\ \text{But} \ Nint(Ncl(Nint(\mathcal{F}))) \subseteq \mathcal{D} \subseteq \mathcal{F}, \ \text{for some} \ \mathcal{F} \ N-C. \ S.. \\ (iii) \Rightarrow (iv) \ \text{Let} \ Nscl(Nint(\mathcal{F})) \subseteq \mathcal{D} \subseteq \mathcal{F}, \ \text{for some} \ \mathcal{F} \ N-C. \ S.. \\ (iii) \Rightarrow (iv) \ \text{Let} \ Nscl(Nint(\mathcal{F})) \subseteq \mathcal{D} \subseteq \mathcal{F}, \ \text{for some} \ \mathcal{F} \ N-C. \ S.. \\ \text{Since} \ \mathcal{D} \subseteq \mathcal{F} \ (by \ \text{hypothesis}), \ \text{hence} \ Ncl(\mathcal{D}) \subseteq \mathcal{F} \Rightarrow Nint(Ncl(\mathcal{D})) \subseteq Nint(\mathcal{F}) \Rightarrow \\ Nscl(Nint(Ncl(\mathcal{D}))) \subseteq Nscl(Nint(\mathcal{F})) \subseteq \mathcal{D} \Rightarrow Nscl(Nint(Ncl(\mathcal{D}))) \subseteq \mathcal{D}. \\ (iv) \Rightarrow (i) \ \text{Let} \ Nscl(Nint(Ncl(\mathcal{D}))) \subseteq \mathcal{D}. \\ \text{But} \ Nscl(Nint(Ncl(\mathcal{D}))) = Nint(Ncl(Nint(Ncl(\mathcal{D})))) \ (by \ \text{lemma} \ (2.6)). \\ \text{Hence} \ Nint(Ncl(\mathcal{D}))) = Nint(Ncl(Nint(Ncl(\mathcal{D})))) \ (by \ \text{lemma} \ (2.6)). \\ \text{Hence} \ Nint(Ncl(Nint(Ncl(\mathcal{D})))) \subseteq \mathcal{D} \Rightarrow \mathcal{D} \in NS_{\alpha}C(\mathcal{U},\mathcal{M}). \end{aligned}$

5. CONCLUSION

The class of NS_{α} -0. S. defined using $N\alpha$ -0. S. forms a nano topology and lay between the class of *N*-0. S. and the class of *Ns*-0. S.. The NS_{α} -0. S. can be used to derive a new decomposition of nano continuity, nano compactness, and nano connectedness.

REFERENCES

- [1] Navalagi, G.B., "*Definition bank*" *in General Topology*, Topology Atlas Preprint # 449, 2000.
- [2] Ali, N.M., On new types of weakly open sets, M.Sc. Thesis, University of Baghdad, 2004.
- [3] Thivagar, M.L., Richard, C., On nano forms of weakly open sets, Int. J. Math. & Statistics Invention, 1(1), 31-37, 2013.