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Abstract. The present paper is the investigation of some integrals for the generalized 

Bessel-Maitland functions, which are expressed in the terms of hypergeometric and beta 
function. Some interesting special cases involving  Jacobi, Legendre polynomial are deduced. 
The integrals established in this paper are of general character. 
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1. INTRODUCTION  
 

The special function of the form defined by the following series representation as 
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is known as Bessel-Maitland function. In fact, the application of Bessel –Maitland function 
are found in the diverese field on mathematical physics, engineering, biological, chemical in 
the book of Watson [9].  

An interesting generalization of the Bessel function is defined by Jain and Aggarwal 
[1] as follow. 
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Further, the generalized Bessel –Maitland function investigated and studied by Pathak 
[3] and defined it as: 
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where NqandeeeC )1,0(,0)(,0)(,0)(,,,   and ,1)( 0 
,)()()(  kqkq  denotes the pochhammer symbol. 

We have also some special cases related with the Mittag -Leffler function of the 
generalized Bessel-Maitland function, as follow. 
(i) If  is replaced by 1 and z  by z , (1.3) reduces to generalized Mittag-Leffler 

function, was given by Shukla and Prajapati [7] as 
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      where NqandeeeC )1,0(,0)(,0)(,0)(,,,    
(ii) If  is replaced by 1 , z  by z  and 1q  (1.3) reduces to  
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was introduced by Prabhakar [4]. 
 

(iii) If  is replaced by 1 , z  by z  and 1,1  q  (1.3) reduces to  
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1,

1,1 zEzJ 

                                                     (1.6) 

was studied  byWiman [10]. 
 

(iv)  If 1,1,0  q and z  is replaced by z , (1.3) reduces to  

                                                           ),()(1,
1,0 zEzJ 

                                                         (1.7) 

was introduced by Ghosta Mittag-Leffler [2]. 
Recently Singh and Rawat [8], established certain integrals for the generalized 

Mittag- Leffler function. In the present paper, we established integrals with Bessel-Maitland 
function, add one more dimension to this study by introducing certain integral for the 
generalized Jacobi polynomials. The integral established in this paper are believed to be a new 
contribution in the theory of fractional calculus. 

 
 

2. INTEGRALS WITH GENERALIZED JACOBI POLYNOMIALS 
 
 The  d,c,,

np  is the generalized Jacobi function, which is defined and studied by Kalla 
et al. [6]. 
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where  
  0)Re(;;,:0   cdCZCnZCd  .                                           (2.2) 

 

In dealing with Jacobi function, It is natural to make much use of our knowledge of 
the hypergeometric function by Rainville ([5], p.45)  
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Interchanging the order of integration and summation which is permissible under the 
condition, then the above expression becomes 
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Now using (2.3) and formula from Kalla et al. [6, p. 372], we get 
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                                                                                                                                               (2.4) 
Provided 

(i) NqandeeeC )1,0(,0)(,0)(,0)(,,,    
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(ii) .11   and  
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Now using (2.1) in the above expression, we get 
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Again using (2.1) and (2.6), we obtain 
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                                                                                                                                               (2.7) 
Using the known result by Rainville ([5], p.261) 
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From equation (2.7) 
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                                                                                                                                               (2.9) 
Provided 

(i) Nqandeee )1,0(,0)(,0)(,0)(    
(ii)  ,1)(  and h  are positive numbers. 
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Using (2.1) in (2.10), we obtain 
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Now using (2.8) and (2.11), we get 
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Provided 
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(i) Nqandeee )1,0(,0)(,0)(,0)(    
(ii) .1)(1)(   and  
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By using (2.1) in (2.13), we obtain 
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Now using (2.8) in (2.14), we get 
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Provided 
(i) Nqandeee )1,0(,0)(,0)(,0)(    
(ii) .1)(1)(   and  

 

        dxxxzJxPxxI th
q

dc
n ]11[)(11 ,

,
),,,(

1

1
5






  


  

    
    dxxPxx

kk

z dc
n

ktkh

k

k
kq )(11

!)1(

)()( ),,,(
1

10






















                                            
(2.16) 

 

Using (2.1) in (2.16), we obtain 
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Now using (2.8) and (2.17), we get 
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Provided 
(i) Nqandeee )1,0(,0)(,0)(,0)(    
(ii) .1)(1)(   and  
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3. SPECIAL CASES 
 
 

For dc  , (2.1) reduces in to Jacobi polynomial )(),( xPn
 which is defined in 

Rainville [5]  
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If we set 0  , the polynomial in (3.1) becomes the Legendre polynomial ([5]). 

From (3.1), If 1x  it also follow that )(),( xPn
 is a polynomial of degree n and that  
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From 1I  integral, we obtain  
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Now from 2I  integral, we obtain
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If we replace 1   and 0  , then the integral 7I  transforms in 
to the following integral involving Legendre polynomials. 
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Now from 3I  integral, we obtain
 

        dxxxzJxPxxI th
qn ]11[)(11 ,

,
),(

1

1
9  










 

    
  )1,1(2

)!()1(

)1()(

)1(

)1(
2 ,

,
0

1 






 




  ktkkhBzJ
k

nn

n
th

q
k k

kkn 




 




        
(3.6) 

If we set 1,1    and 0  , then the integral 9I  transforms in to the 
following integral involving Legendre polynomials. 
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Now from 4I  integral, we obtain
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Now from 5I  integral, we obtain
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If we replace 1,1    and 0  , then the integral 12I takes the 

following integral involving Legendre polynomials. 
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4. CONCLUDING REMARKS 
 

 
In the present paper, we investigate new integrals involving the generalized Bessel-

Maitland function, in terms of the hypergeometric function and beta function. Some special 
cases of integrals invovling the generalized Mittag -Leffler function have been investigated in 
the literature by a many authors with different arguments.  

It is interesting to observe that the results given by Singh and Rawat [8, eq.16, 19, 22, 
25, 26, 27 and 28] follow from the special cases results derived in this paper, if we use (1.4) 
and some suitable parametric replacements.                                      
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