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Abstract. In this paper, we study the local properties of the intersection curve of a 

spacelike surface and a timelike surface. We derive the curvature vector, curvature and 
torsion for the transversal intersection for parametric-parametric intersection problem. 
Furthermore, we investigate some characteristic features of the intersection curve. 
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1. INTRODUCTION  
 

At the beginning of 20th century, Albert Einstein came up with his theory of special 
relativity, built upon Lorentzian geometry. During the 1970s, Semi-Riemannian Geometry 
had become an active research area in differential geometry and its applications to a variety of 
subjects in mathematics and also in physics. Therefore, researchers focused on Lorentzian 
Geometry, the mathematical theory used in General Relativity. Since then, there has been 
considerable progress in the number of papers connecting differential geometry, mathematical 
physics and general relativity. The theory of curves and surfaces is well studied in Lorentzian 
Geometry analogous to Euclidean Geometry. For example, Claudel, Virbhadra and Ellis in [2] 
investigated the geometry of photon surfaces. Therefore, give some details and results about 
their geometric characterizations in 3-dimensional Minkowski Space 3

1 . Kiehn [8] gave the 

result that Falaco solitons (which looks like wormholes structures in a swimming pool) can be 
represented as maximal surfaces in 3-dimensional Minkowski Space 3

1 . Furthermore, there 

is much literature that contains differential geometry of curves and surfaces such as do Carmo 
[3], Struik [13]; Wilmore [15]. Unfortunately, there is less literature concerning the geometry 
of the intersection curve of two surfaces. In the Euclidean Geometry, Faux and Pratt [4] 
express the curvature of the intersection curve between two parametric surfaces. Willmore 
[15] provides how to obtain the unit tangent vector t, the unit principal normal vector n, and 
the unit binormal vector b, as well as the curvature  and the torsion   of an intersection 
curve of two implicit surfaces. Ye and Maekawa [16] describes how to compute t, n, b,  ,   
and the method for the evaluation of higher-order derivatives for both transversal and 
tangential intersections of all three types of intersection problems. In Global Lorentzian 
Geometry, Alessio and Guadalupe in [1] have already examined the local properties of a 
transversal intersection curve of two spacelike surfaces in 3

1  and given some results. The 

investigation in this paper is the analogue of that in [1] for the spacelike transversal 
intersection curve of a spacelike surface and a timelike surface. The paper is organised as 
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follows. In Section 2, we present the fundamental theory of Lorentzian geometry. In Section 
3, we computed the curvature and torsion of the transversal intersection spacelike curve of a 
spacelike surface and a timelike surface. In section 4 we give some results on the 
characterization of the intersection curve and in the last section, we illustrate these findings by 
giving some examples. 

 
 

2. MATERIALS AND METHODS 
 
 

In this study, the 3-dimensional Minkowski Space 3
1  is the pair  3, , . 3  is a 

three-dimensional real vector space equipped with a Lorentz metric (inner product), 
3 3, :      

                                               1 1 2 2 3 3, ,x y x y x y x y x y      
(1)

where  1 2 3, ,x x x x  and  1 2 3, ,y y y y . 

A vector 0x   in 3  is called spacelike, timelike or a null (lightlike), if respectively 
holds , 0x x  , , 0x x   or , 0x x  . Especially, the vector 0x    is spacelike. If 

  3
1 2 3, ,x x x x    and its norm defined by 

1
2 2 22
1 2 3,x x x x x x      (2)

Any given two vectors  1 2 3, ,x x x x and  1 2 3, ,y y y y in 3
1  are said to be 

orthogonal if , 0x y  . A vector  1 2 3, ,x x x x  in 3  which satisfies , 1x x    is called a 

unit vector. Any basis  1 2 3, ,f f f  on 3
1  is known as an orthogonal basis if the vectors 

1, 2,3i   are mutually orthogonal vectors such that 1 1, 0f f   and, 2,3i  .Therefore, for 

every  1 2 3, ,x x x x  and  1 2 3, ,y y y y in 3
1 , we have ([10]) 

1 1 2 2 3 3, , ,x x e e x e e x e e     (3)

Lemma 1. If y is a timelike vector in 3
1  and x is orthogonal to y then x must be a spacelike 

vector, [11]. 
Proposition 2. Let x is a spacelike vector and y is a timelike vector in 3

1 . Then there is 

a unique called Lorentzian Timelike angle between x and y, such that 
, sinhx y x y   

We also define the vector product [7] or [9] of x and y (in that order) as 

 
1 2 3

1 2 3 3 2 2 3 3 1 1 3 1 2 2 1

1 2 3

, ,

e e e

x y x x x x y x y x y x y x y x y

y y y


       (4)

where  1 2 3, ,e e e  is the canonical basis of 3
1 ,  1 2 3, ,x x x x  and  1 2 3, ,y y y y therefore, the 

triple scalar product of the three vectors x, y, z is readily given by 

1 2 3

1 2 3

1 2 3

,

z z z

z x y x x x

y y y

   (5)
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where  1 2 3, ,z z z z . Remind that the vector product is nonassociative and that furthermore 

we have the following properties 

, ,
, det

, ,

u y v y
u v x y

u x v x

 
    

 
 (6)

where u, v, x, y are arbitrary vectors in 3
1  and 

  , ,u v w v w u u w v     ; 3
1, ,u v w  (7)

An arbitrary curve  c c s  can locally be a spacelike, timelike or null (lightlike) if all 

of its velocity vectors  c s are respectively spacelike, timelike or null [12].  A non-null curve 

 c c s is said to be parameterized by pseudo-arc length parameter s, if    , 1c s c s    .  

In this case, the curve  c c s  is said to be of unit speed.  

Let  c c s  be a spacelike curve parametrized by arc length s. Therefore c  is a 

spacelike unit vector, i.e., 1c  , this implies that 
2

, 1c c c    . Then 

, 0c c    (8)

According to the causal character of the vector c  we consider the following three 
cases(see[14]): 
 

Case 1. , 0c c     

The function        ,s c s c s c s      is called the curvature c at s. At the 

points where   0s   a unit vector  n s  in the direction  c s  is well defined by the 

equation 

     c s s n s   (9)

From Eq (9), we can see that the  c s  is normal to  c s . So,  n s  is normal to 

 c s , and it is a spacelike vector and is called the normal vector at s. We shall denote by  

   t s c s  the spacelike unit tangent vector of c at s. Thus from Eq (9). We obtain 

     t s s n s   (10)

The binormal vector 

     b s t s n s   (11)

is the unique timelike unit vector perpendicular to the spacelike (osculating) plane 

    ,t s n s  at every point  c s  of c such that  , ,t n b  has the same orientation as 3
1 . The 

Frenet formulas are 
t n   

n t b      
b n   

(12)

 
Case 2. , 0c c    
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The normal vector  n s  is the unit timelike vector. The binormal vector  b s  is the 

unique spacelike unit vector perpendicular to the plane     ,t s n s  at every point  c s  of c 

such that  , ,t n b  has the same orientation as 3
1 . The Frenet formulas are 

t n   
n t b     

b n   
(13)

 

Case 3. , 0c c    

To rule out straight lines and points of inflexion on c, we shall assume that 0c  . The 
normal vector  n s  is then the vector  c s . The binormal vector  b s   is the unique null 

vector perpendicular to  t s  at every point  c s  of c such that , 1n b  . The Frenet  

formulas are 
t n   
n n   

b t b      
(14)

Now let us evaluate the third derivative  c s . By differentiating the equation 

c t n    in the three cases, we obtain  
Case 1.   2c s t n b                                                                                                 (15)

Case 2.   2c s t n b                                                                                                  (16)

Case 3.  c s n                                                                                                                  (17)

The torsion can be computed from Eq.(15), Eq.(16) and Eq.(17) as 

Case 1. 
,b c





                                                                                                               (18)

Case 2. 
,b c





                                                                                                                 (19)

Case 3. ,b c                                                                                                                   (20)

An arbitrary plane in 3
1  is spacelike if the induced metric is Riemannian. Moreover, 

an arbitrary regular surface  ,X X u v  is called a spacelike surface or timelike surface, if 

u vX X  is a timelike vector or spacelike vector respectively. The surface normal vector is 

perpendicular to the tangent plane and therefore at any point the unit normal vector is given 
by 

u v

u v

X X
N

X X





 (21)

Let  ,X X u v  be a surface and       ,c s X u s v s   a curve on X. At the point 

 p c s  consider the three unit vectors    t s c s ,  N s  the normal vector to X at p, such 

that  , ,t U N  is a positive orthogonal frame. This orthogonal frame is called the Darboux 

trihedron. The unit tangent vector field t and the unit normal vector field n (in the three cases) 
of the curve c at point p are related by equation t n   as  follows: 

n g

dt
K n

ds
       (22)
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where n  is the normal curvature vector and g  is the geodesic vector that are the 

components of the curvature vector K of c in the surface normal direction and on the direction 
perpendicular to T in the surface tangent plane. So, the normal curvature vector field can be 
expressed as 

n nk N   (23)
where nk  is called the normal curvature of the surface at p in the direction t. In other words, 

nk  is the length of the projection of K over the normal to the surface at p, with a sign given by 

the orientation N on X at p. Besides, the geodesic curvature vector can be expressed as 

g gk U   (24)

where gk  is called the normal curvature of the surface at p in the direction U. In other words, 

gk  is the length of the projection of K over the normal to the surface at p, with a sign given by 

the orientation N on X at p. 
 

Remark 1: Any geodesic that is a regular curve is thus characterised as a curve whose 
geodesic curvature 0gk   We can define the geodesic torsion g  of the surface X at p by 

using the Darboux trihedron  , ,t U N  as: 

,g U N   (25)

Moreover, we can easily check that: 

g nt U N     (26)

g gU t N      (27)

n gN t U     (28)
The equations above are analogous to Frenet-Serret formulas for the Darboux 

trihedron  , ,t U N . 

 
Remark 2: A curve c X  is a line of curvature if and only if the geodesic torsion

0g   

 
Remark 3: Let p be a point in X. An asymptotic direction of X at p is a direction on 

the tangent space  pT X  for which the normal curvature is zero. An asymptotic curve of X is 

a regular connected curve c X  such that, for each p∈c, the tangent line of c at p is an 

asymptotic direction. 
 
 
 
3. PROPERTIES OF A TRANSVERSAL INTERSECTION SPACELIKE CURVE OF 

A SPACELIKE SURFACE AND A TIMELIKE SURFACE IN 
3
1  

 
 
 
In this section, we compute the curvature k  and torsion   of a transversal intersection 

spacelike curve of a spacelike surface and a timelike surface in 3
1  Let  ,A AX X u v  and 

 ,B BX X u v  be a spacelike and timelike parametric surfaces, respectively. Let  c c s  be 
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the transversal intersection spacelike curve of both surfaces AX  and BX . This means that the 
spacelike tangent vector of the transversal intersection spacelike curve c  lies on the tangent 
planes of both surfaces. Therefore, it can be obtained as the cross product of the unit surface 
normal vectors of the surfaces at  p c s  

A B

A B

N N
t

N N





 (29)

where AN   is the timelike unit normal vector to the spacelike surface AX  and BN  is the 
spacelike unit normal vector to the timelike surface BX . 
 
3.1. CURVATURE  
 

Since the curvature vector ''c  of the transversal intersection curve at p  is 

perpendicular to t ,  must lie in the normal plane spanned by AN  and BN . Hence, we can 
write it as 

A Bc N N     (30)
where   and  are the coefficients that we need to compute. From Eq. (23) we can check 

that normal curvature at p  in the direction t  is the projection of the curvature vector ''c kn  

onto the timelike unit normal vector N  at p . Therefore by projecting Eq. (30) onto the AN    

the timelike unit normal vector of spacelike surface AX   and BN    the spacelike unit normal 
vector of the timelike surface, respectively. We obtain  

sinhA
nk      

sinhB
nk      

(31)

Since AN and BN  are timelike and spacelike, respectively and   sinh ,A BN N  , Then we 

have the following proposition : 
 
Proposition 1. Let  ,A AX X u v  and  ,B BX X u v  be a spacelike and timelike parametric 

surfaces, respectively. Suppose that the  c c s  be the transversal intersection spacelike 

curve of both surfaces AX  and BX , and c  be the curvature vector.  Then the curvature k  of 
the curve c  is given by 

   2 2

2
2

2 sinh

cosh

A B A B
n n n nk k k k

k




 
  (32)

Proof. Since Eq. (31) forms a linear system. By solving this system for the coefficients   and 
   we obtain  

2

sinh

cosh

A B
n nk k 




 , 
2

sinh

cosh

B A
n nk k 


 

           (33)

By substituting Eq. (33) in Eq. (30) we have  

2 2

sinh sinh

cosh cosh

A B B A
A Bn n n nk k k k

c N N
 

 
      (34)

Now by using the same manner Ye and Maekawa [16] and Alessio and Guadalupe [1], 
we can determine the two normal curvatures A

nk  and B
nk  at p  and therefore we compute the 
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curvature vector from Eq.(34). Finally, the curvature of the intersection spacelike curve c  at 
p  can be computed by using Eq.(9), and Eq. (34) as follows 

2 ,c c  
2 2

2 2 2 2

sinh sinh sinh sinh
, , 2 ,

cosh cosh cosh cosh

A B B A A B B A
A A B B A Bn n n n n n n nk k k k k k k k

N N N N N N
   

   
           

        
      

 

   2 2

2

2 sinh

cosh

A B A B
n n n nk k k k 



 
  

 
 
3.2. TORSION 
 
 

Since the timelike unit normal vector AN  and spacelike unit normal vector BN  lie in 
the normal plane, the term 'k n k b in Eq.(15) and Eq.(16) and the term n  in Eq.(17) can be 
replaced by A BN N  . Thus 

Case 1.   2 A Bc s t N N                                                                                             (35)

Case 2.   2 A Bc s t N N                                                                                               (36)

Case 3.   A Bc s N N                                                                                                      (37)

Now, if we projected  '''c s  onto AN    the timelike unit normal vector of spacelike surface 
AX   and BN    the spacelike unit normal vector of timelike surface BX  and denoted by A

n  

and B
n  respectively. We obtain 

sinhA
n      

sinhB
n      

(38)

Thus, we can give the following 
 
Proposition 2. Let  ,A AX X u v  and  ,B BX X u v  be a spacelike and timelike parametric 

surfaces, respectively. Suppose that the  c c s  is the transversal intersection spacelike 

curve of both surfaces AX  and BX .  Therefore c  is a spacelike, timelike or null vector.  
Then the torsion of the curve c  is given by 
 

Case 1. 
,b c





   

2 2 2

sinh sinh1
, ,

cosh cosh cosh

A B B A
A Bn n n nb N b N

     
   

      
      

    
    

(39)

Case 2. 
,b c





  

                
2 2 2

sinh sinh1
, ,

cosh cosh cosh

A B B A
A Bn n n nb N b N

     
   

      
     

    
 

(40)

Case 3. ,b c   (41)
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2 2 2

sinh sinh1
, ,

cosh cosh cosh

A B B A
A Bn n n nb N b N

     
  
      

     
    

 

where the binormal vector b  is evaluated in the three cases, and the curvature k  is computed 
by Eq.(32). 
 
Proof. By solving the coefficients   and   from linear system Eq (38) we have 

2

sinh

cosh

A B
n n  




 , 
2

sinh

cosh

B A
n n  


 

                                        (42)

Moreover, by substituting in Eq. (35), (36), (37) we obtain 
Case 1. 

  2
2 2

sinh sinh

cosh cosh

A B B A
A Bn n n nc s t N N

     
 

            
   

 (43)

Case 2. 

  2
2 2

sinh sinh

cosh cosh

A B B A
A Bn n n nc s t N N

     
 

           
   

 (44)

Case 3.  

  2 2

sinh sinh

cosh cosh

A B B A
A Bn n n nc s N N

     
 

          
   

 (45)

Now by using the same methods as the ones of Ye and Maekawa [16] and Alessio and 
Guadalupe, [1]. We can compute A

n  and B
n  to evaluate '''c . As a result, from Eq.(18), (19) 

and (20) and the Eq.(43), (44),(45),  we can easily obtain Eq.(39), (40) and (41). 
 

 
 
4. CHARACTERIZATION OF TRANSVERSAL SPACELIKE CURVE OF A 

SPACELIKE SURFACE AND A TIMELIKE SURFACE 
 
 

In this section, we obtain two characterizations of transversal intersection spacelike 
curves of a spacelike surface AX  and a timelike surface BX  that are given by Theorem 1 and 
Theorem 2. Let   , ,A AT U N  and  , ,B BT U N  be positive orthogonal frames on AX  and BX

, respectively,  where A AU N T   and B BU N T  . 
 

Lemma 2. Suppose that the  c c s  is the transversal intersection spacelike curve of 

spacelike surface AX   and timelike surface BX . If A
gk  and B

gk  are the geodesic curvatures of 
AX  and BX , respectively, then we have  

sinh

cosh

B A
A n n
g

k k
k





  (46)

sinh

cosh

A B
B n n
g

k k
k





  (47)

where A
nk  and B

nk   are the normal curvatures of  AX  and BX , respectively. 

 
Proof. Using Eq. (7) Moreover, Prop. (2) we have that  
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, ,A A B A B AA A B
A A

A B A B

N N N N N NN N N
U N T

N N N N

 
   

 
  

sinh

cosh

B AN N



  (48)

similarly, we have  

, ,A B B B B AB A B
B B

A B A B

N N N N N NN N N
U N T

N N N N

 
   

 
  

sinh

cosh

B AN N



  (49)

From Eq (34)  

''
2 2

sinh sinh

cosh cosh

A B B A
A Bn n n nk k k k

c N N
 

 
  

    

Thus  Using Eq. (22), (23), (24) and (48) we obtain Eq.(46) and (47). Indeed, 
,A A

gk c U  

2 2

sinh sinh
,

cosh cosh

A B B A
A B An n n nk k k k

N N U
 

 
  

   

2 2

sinh sinh sinh
,

cosh cosh cosh

A B B A B A
A Bn n n nk k k k N N

N N
  

  
   

   

sinh

cosh

B A
n nk k 




  

 

similarly, we obtain 
sinh

,
cosh

A B
B B n n
g

k k
k c U




    

 
Lemma 3. Suppose that spacelike surface AX   and timelike surface BX intersect along a 
spacelike curve  c c s  and let   be the angle made by the normal vectors of AX  and BX  

at p c . Then we have  

B A
g g

d

ds

     (50)

where  A
g  and B

g are the geodesic torsions of  AX   and BX , respectively. 

 
Proof. Applying Eq. (27) to the surfaces AX   and BX  we have  

 A A A A
n gN k T U    (51)

and  

 B B B B
n gN k T U    (52)

Now, differentiating , sinhA BN N  and using Eq. (51), (52), (48) and (49) we obtain 

   cosh , ,A B A Bd
N N N N

ds

     

                 , ,A A B B B A
g gU N U N    
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sinh sinh

, ,
cosh cosh

B A B A
A B B A
g g

N N N N
N N

  
 

 
   (53)

                  coshB A
g g      

So we have  
B A
g g

d

ds

      

 
Theorem 1. Suppose that a spacelike surface AX  and a timelike surface BX  intersect along a 
spacelike curve  c c s . Then c  is a geodesic curve of AX  and BX  if and only if c  is an 

asymptotic curve of AX  and BX  (i.e. 0A B
n nk k  where A

nk  and B
nk  are the normal 

curvatures of AX  and BX , respectively).   
 
Proof. If c  is a geodesic curve of AX  and BX  from Remark (1) it follows that 0A B

g gk k   

Now, using Eq.(46) and Eq.(47) from Lemma (2), we have 
sinh 0

sinh 0

B A
n n
A B
n n

k k

k k




  


 
 (54)

Solving the homogeneous linear system Eq.(54), we obtain 0A B
n nk k  , since 

2 2sinh 1
det sinh 1 cosh 0

1 sinh


 


 

      
 

  

Moreover, therefore, c  is an asymptotic curve of AX  and BX . Conversely, if 0A B
n nk k   

then from Eq.(46) and Eq.(47) it follows that 0A B
g gk k   and, therefore, c  is a geodesic 

curve of AX  and BX . 
 
Theorem 2. Suppose that spacelike surface AX  and timelike surface BX  intersect along a  
spacelike curve  c c s  and let   be the angle made by the normal vectors of AX  and BX  

at p c . Assume that  c  is a line of curvature of AX . Then   is constant if and only if c  is a 

line of curvature of BX . 
 
Proof. If c  is a line of curvature of AX  from Remark (2), it follows that 0A

g  . Using 

Eq.(50) from the above Lemma (3) and the fact that   is constant we have 0B
g  , and this 

implies that c  is a line of curvature of BX  Conversely, if c  is a line of curvature of BX  then 

we obtain 0A B
g g    and therefore from Eq.(50)  it follows that 0 0 0B A

g g

d

ds

       , 

and this implies that   is constant. 
 
 
5. EXAMPLES 
 

 
To illustrate Proposition 1, Proposition 2, Theorem 1 and Theorem 2, we present now 

some examples. 
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Example 1. The parametric surface AX   is a Hyperbolical cylinder given by 

   , cosh ,sinh ,AX u v u u v . Moreover, parametric surface BX  is a plane given by 

   , ,3,BX r w r w  

 
Figure 1. Intersection of a Hyperbolic cylinder with a plane. 

 
The intersection curve is a straight line. It is both an asymptotic curve and a geodesic 

of AX  and BX . Indeed, since the intersection curve is a straight line, the curvature is 0k  , 
then 0A B

n nk k   and 0A B
g gk k  . 

 
Example 2. The parametric surface AX   is a Hyperbolic cylinder given by 

   , cosh ,sinh ,AX u v u u v  

 
Figure 2. Intersection of a Hyrperbolic cylinder with a ruled surface. 

 
Moreover, parametric surface BX  is ruled surface given by 
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     ,X r w c r w r    

where    cosh ,sinh ,0c r r r  and   1
2

2
A Ar N U    

 
. The normal vector 

    cosh , sinh ,0AN c r r r    and     0,0, 1AU c r   . The  c r  is the intersection 

curve. The derivative of the normal vector is 
    sinh , cosh ,0

AdN c r
r r

dr
    and 

    0,0, 1AU c r    then    '
, 0A A A

g N c r U    from remark (2) it follows that c is a 

line of curvature in AX   The derivative of the normal vector is  

    1
sinh ,cosh ,0

3

BdN c r
r r

dr
  and     1

4cosh , 4sinh ,1
3

BU c r r r  

   '
, 0B B B

g N c r U    From remark (2) it follows that c is a line of curvature in BX   

The angle made by the normal vectors of AX  and BX  is constant. Indeed since  

    cosh , sinh ,0AN c r r r   and     1
cosh ,sinh , 2

3
BN c r r r  

          2 21 1
, cosh sinh

3 3
A BN c r N c r r r   . 
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