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Abstract. The variational iteration method (VIM) is applied to find the approximate
solutions of the Whitham-Broer-Kaup (WKB) shallow water model. The results obtained are
compared with the exact solutions. The results show that the variational iteration method is
efficient and practically well suited for solving coupled nonlinear water wave equations.
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1. INTRODUCTION

Nonlinear system of partial differential equations plays important roles in many
physical phenomena that appear in many engineering and sciences such as fluid mechanics,
solid state and plasma physics, chemical kinetics and mathematical biology.

The study of coupled nonlinear system of partial differential equations had attracted
the attention of various researchers in order to find the best numerical solutions of the
equations.

In this research, the coupled Whitham-Broer-Kamp (WBK) [1], Broer [2] and Kamp
[3] are considered. The equations model the propagation of shallow water waves, with
dispersion relations. The WBK equations are of the form:

u, +uu, +v, +pu,, =0
Vv, +uv, +Vvu, +au,,, — v, =0 1)

where u=u(x,t) is the horizontal velocity, v=v(x,t) is the height that deviates from
equilibrium position of the liquid, & and g are constants which are represented diffusion
powers [4].

The equations described dispersive waves. It represents the modified Boussinesq
(MB) equations when a=1 and g=0. If «=0 and g=0, the system models the classical

long-wave equations that describe shallow water wave with dispersion.
The exact solution of u(x,t) and v(x,t) are given by [5] as:

! Osun State University, College of Science, Engineering and Technology, Faculty of Basic and Applied
Sciences, Department of Mathematical and Physical Sciences, Osogbo, Nigeria.
E-mail: olayiwola.oyedunsi@uniosun.edu.ng.

ISSN: 1844 — 9581 Mathematics Section



338 On the numerical solution of... Morufu Oyedunsi Olayiwola

u(x,t)=1- Zk(a + p? )0'5 coth[k(x + x,)— At]

)
v(x,t)=2- ZkZ(a + 52+ Ble +ﬂ2)0'5)csch2[k(x +x,)-At]
where A4,k and x, are arbitrary constants. Some researchers have used different methods to

solve the WBK equations. In [6], the Laplace decomposition method and the pade
approximation were used to solve WBK equations. Also in [7] the homotopy analysis method
was employed to find the approximate travelling wave solutions of coupled WBK shallow
water equation. Jamshad Ahmed et. al [8] provided the exact solution of WBK shallow water
wave equations using He’s polynomial and Adomain decomposition method.

The aim of this research article is to apply the variational iteration method to solve the
Whitham-Broer-Kamp shallow water wave equations. Inokuti et. al [9] proposed a general
Lagrange multiplier to solve problems in quantum mechanics, later, He [10-11] modified it
into an iterative method that is called variational iteration method. This method is capable of
greatly reducing the computational time while still maintaining high efficiency [10-16].

2. BASIC CONCEPTS OF VARIATIONAL ITERATION METHOD

The basic idea of the He's Variational Iteration Method (VIM) [10-16], can be
explained by considering the following nonlinear partial differential equations

Lu + Nu = g(x) 3)

where L is the linear operator, N is the nonlinear operator and g(x) is the inhomogeneous

term. According to the method, we can construct a correction functional.
The corresponding variational iteration method for solving (3) is given as

Uiy (0 =U, (09 + [ A(9)] L, (&) + N, () - 9(8) &, @)

where 4 is a Lagrange multiplier which can be identified optimally by variational iteration

method. The subscript n denote the nth approximation, uﬁn is considered as a restricted

variation i.esu, = 0. The successive approximation u_, n>0 of the solution Ucan be easily

n+1,

obtained by determine the Lagrange multiplier and the initial guess u,, consequently, the
solution is given by u =limu, .

n—oo

3. APPLICATION

In this section, the Variational iteration method is used to solve the coupled Whitham-
Broer-Kamp equations (1) with different parameters.
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Example 3.1: Consider the WBK (1) with «=0 and g=0.5then the equation
becomes:

u, +uu, +v, +0.5u,, =0

) : ©)
. +uv, +vu, —0.5v,, =0
Subject to the following conditions:
u(x,0)= 2 —k coth[k(x + x. )] (6)
v(x,0)=—k?csch?[k(x + x. )]
According to the VIM, the correction functional (4) of equation (6) as:
t
Ut (06 8) =, (6, 0+ [ 20 £)un () + Uy (6, ), (), +v, (%, £)+ 050, (x,£) o &
0
()

(0=, 060+ [ 200 (02) 40, (0 2V, 00, v, (%, 20, (0, 2), — 057, ()., e

where /1(x,§)= —1 can be found from equation (7). Hence, the correction functional as shown
in equation (7) becomes the iteration formula as follows:

Upa () =, (6 ) = [ Uy (6, €), Uy (%, &)y (%, €)y +V, (%, €) + 0.5U, (%, €), JE
®)

Vs (6 8) =, ()= [ Jun (%,€), + Uy (%, N, (%, €)y 4V, (%, g (x, ), — 0.5v, (x, &), [

Oty O e

Using the above iteration, the following approximation can be obtained.

Uo(x,t)= 4 —kcoth(k(x + X, ))

Vo(x,t)=—k?csch?(k(x+x,)) ©)

uy (x,t)= 2 -1k coth(k(x + x, ) + 1kt — 1kt coth(k(x + x, ))* — 2kt coth(k(x + X, ))
+ 23t coth(k(x +x,))* —2.k* csch(k(x + x, ))* coth(k(x + x, ))t

(k(x+ X, ))* csch(k(x + x, ))* +1.333333333° coth(k(x + X, ))

csch(k(x +x )k’ (10)
v, (x,t) =—1.k? csch(k(x + %, ))° —2.k® csch(k(x + x, ))* coth(k(x + X, )JtA + 3.k * csch(k(x + X, ))°
coth(k(x + x, ))*t —1.k* csch(k(x + x, ))*t + L.kt coth(k(x + X, )) - 1.k *t coth(k(x + X, ))°

csch(k(x +x,))° —5.333333333%” coth
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u,(x,t)=2-1.kcoth(k(x+x, ))—2.k* csch(k(x + x, ))* coth(k(x+ X, ))t —1. k >t4 coth(k(x + X, ))?
+7.333333333%°k © coth(k(x+ X, ))* 2 —3.333333333 °k ® coth(k(x + X, ))° 4 — 7.99999999% *k /

coth(k(x+x, ))° csch(k(x +x, ))* +10.66666667t*k " coth(k(x + X, ))°* csc h(k(x + x, ))?

—2.666666666t° coth(k(x + X, ))csch(k(x+x, ))* k7 +4.000000000t® coth(k(x + x, ))* esch(k(x+x, )k’
—1.333333333° coth(k(x + X, ))csch(k(x + x, ) k7 —1.33333333%°k ® 4% coth(k(x + X, ))*
+0.6666666666t °k ° A% coth(k(x + X, ))° —4.666666666t °k ° 2 coth(k(x + X, ) +0.6666666666t *k ° 12
coth(k(x+x, ))+0.6666666666t°k ° 2 csch(k(x + X, ))* +16.00000000t %k ® csc h(k(x +x, ))* coth(k(x + x, ))*
—10.00000000t 2k ® csch(k(x + X, ))* coth(k(x + X, ))+1.000000000t °k * 2% coth(k(x + X, ))

—1.000000000t 2k ® 4% coth(k(x + X, ))* —8.000000000t 2 2k * coth(k(x + X, ))* +6.000000000t 2 2k *
coth(k(x+x, ))* +2.000000000t2 2k * csch(k(x+ X, ))* +1.k*t4 — 2. k3t coth(k(x + 2x, )+ 2.k 3t coth(k (x + X, ))*
+0.6666666666t *k 2 —0.5000000000t >k * —4.000000000t* coth(k(x + X, ))* csch(k(x+x, ))* k® 4
+3.33333333%° coth(k(x+ X, ))* csch(k(x+ X, ))*k°®2 —6.000000000t 2k * csc h(k(x + x, ) coth(k(x+x, ))* 24
+2.000000000t2 2k * +6.666666666t °k ” coth(k(x + X, ))* —9.333333332t°k 7 coth(k(x + X, ))°
4,000000000t°k ” coth(k(x+x, )" —1.33333333&°k ” coth(k(x + X, ))+2.000000000t 2k * coth(k(x + X, ))°
—1.500000000t 2k * coth(k(x + X, ))* —6.000000000t >k ® coth(k(x + X, ))+16.00000000t 2k ® coth(k(x + x, ))*
—10.00000000t 2k ® coth(k(x + x, ))°

v, (x,t) = =2k cosh(k(x+x, ))* coth(k(x+x, )2 —1.k? esch(k(x+x, ))* +3.k* csch(k(x +x, ))* coth(k(x+ X, ))*t
—3.666666666t°k ° coth(k(x+ X, ))* 1 +1.666666666t°k ® coth(k(x + X, ))° 4 +4.00000000t*k " coth(k(x + X, ))°

csch(k(x+x, ))* —5.333333333% °k ’ coth
(11)

After five iterations, the graphs of the VIM and exact solutions with different
parameters are plotted as shown in Figs. 1 - 4.
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Figure 1. (a) Exact solution and (b) VIM solution of u(x,t)with —50<x<50, 0<t<1,k=0.1, and

Xo =10.
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Figure 2. (a) Exact solution and (b) VIM solution of v(x,t) with —50
Figure 3. (a) Exact solution and (b) VIM solution of u(Xx,t)with —100

0.1, and
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Xo =10.

Figure 4. (a) Exact solution and (b) VIM solution of v(X,t) with—100
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Example 3.2: Consider the WBK (1) with «=0.5 and g=1then the equation
becomes:

u, +uu, +v, +u, =0
Ve +uv, +vu, +0.5u,,, -V, =0 (12)

with the initial conditions:

u(x,t)= 4 — 24/1.5k coth[k(x + x. )]

13
v(x,t)=-2+/3k2 csch?[k(x + . )] (13
The iteration formula as becomes:
t
Un.a (X 0= Jua(08); +un (6 a0 8 +v, (6,8, +u, (6. 8)o e
° (14)
v I { ' (% E W, (%, €)y +v, (% Sy (%, ), + iz
”+1 0 X ‘é: XXX (X"f)xx

Using the above iteration, the following approximation can be obtained.

Up (x,t)= 1 — 2.449489742k coth(k(x + X, )

Vo (X,t)= 2 —2.724744871k? csc h(k(x + X, ))° (15)
U (X, t) = 2 — 2.449489742 keoth(K(x + X, )) + 2.449489742k *tA
— 2.44948974k *tA coth(k(x + x, ))° —10.89897948k *t coth(k (x + )
+10.89897948k *t coth(k(x + X, ))° —5.449489742k ® csc h(k(x + x, ))* coth(k(x + x, )X

v, (x,t) = —2.724744871k ? csch(k (x + x, ))* — 5.449489742k® csc h(k (x + x, ))? (16)
coth(k(x + o ))tA + 20,02270383k * csc h(k(x + x, ))* coth(k(x + x, )t

— 6674234611k * csch(k(x + x, ))°t — 2.449489742k “t

+9.707958968k “t coth(k (x + X, ))* — 7.348469226k “t coth(k (x + X, ))*

+4.898979484k *t coth(k (x + X, )) — 4.898979484k *t coth(k (x + X, ))*

After five iterations, the graphs of the VIM and exact solutions with different
parameters are plotted as shown in Figs. 5 to 8.
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Figure 8. (a) Exact solution and (b) VIM solution of v(X,t) with —100<x <100, 0<t<1,k=0.1,and

Xo =10.

CONCLUSION

In this paper, the variational iteration method has been used to find the numerical

solutions of the Whitham-Broer-Kamp (WBK) equations in shallow water. The solution
obtained was in good agreement with the exact solutions as shown in the graphs plotted. This
method does not require any linearization and discretization. The method also requires less
computational time as it converges rapidly. It was also observed that the VIM is powerful tool
for solving WBK equations with wide applications in sciences and engineering.
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