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Abstract. In this study, a reliable Homotopy Analysis Method (HAM) is applied to 
obtain analytical solutions of dielectric relaxation processes equation of fractional order. 
The, fractional derivatives are based on Jumarie’s fractional derivative sense. The obtained 
solutions which are valid at low temperatures are applied to the dielectric relaxation 
processes. The graphical representation of the obtained results is courageous. 
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1. INTRODUCTION 
 
 
In recent years, the analysis of fractional differential equations, which are obtained 

from the classical differential equations in mathematical physics, engineering, vibration and 
oscillation by replacing the second order time derivative by a fractional derivative of order   
satisfying ,10   have been a field of growing interest as evident from literature survey [1-
6]. Fractional derivatives provide an excellent instrument for the description of memory and 
hereditary properties of various materials and processes. 

G. Jumarie [7, 8] introduced a new definition of modified Riemann-Liouville 
derivative.This modified definition of Riemann-Liouville derivativein comparison with the 
classical caputo derivative, is not required to satisfy higher integer-order derivative than  . 
Secondly  th derivative of a constant is zero. Due to these merits, this new modified 
definition of fractional derivative were successfully applied in the probability calculus [9], 
fractional Laplace problem [10]. 

The solution of a fractional differential equation is much involved. In general, there 
exists no method that yields an exact solution for a fractional differential equation. Only 
approximate solutions can be derived using the linearization or perturbation methods. The 
Homtopy anlysis method is  relatively new approach providing an analytical approximation to 
linear and nonlinear problems, and is particularly valuable as tool for scientists, engineers, 
and applied mathematicians, because it provide immediate and visible symbolic terms of 
analytic solutions, as well as a numerical approximate solution to both linear and nonlinear 
differential equations without linearization or discretization. 

In this paper, we appliedthe Homotopy Analysis Method (HAM) to obain the analtical 
approximate solutions of fractional order relaxation of dielectric materials equation. This 
fractional relaxation of dielectric materials equation is obtained by replacing the time 
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derivative term in the corresponding vibration equation by a fractional derivative of order
with .10   The derivatives are understood in the modified Riemann-Liouville sense. The 
general response expression contains a parameter describing the order of the fractional 
derivative that can be varied to obtain various responses. In the case of ,1  the fractional 
relaxation of dielectric materials equation reduces to the standard vibration equation. By the 
present method, numerical results can be obtained with using a few iterations.The homotopy 
analysis method (HAM) contains the auxiliary parameter . which provides us with a simple 
way to adjust and control the convergence region of solution series for large value of  t [11, 
12] .Unlike, other numerical methods which give low degree of accuracy for large values 
oft.Therefore, the homotopy analysis method (HAM) handles linear and inhomogeneous 
problems without any assumption and restriction [13]. 

 
 

2. MODIFIED RIEMANN-LIOUVILLE  DERIVATIVE 
 
 
Assume )(,: xfxRRf  denote a continuous (but not necessarily differentiable) 

function and let the partition 0h  in the interval [0, 1]. Through the fractional Riemann 
Liouville integral  
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The modified Riemann-Liouville derivative is defined as 
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where nnx  1],1,0[ and .1n  

Jumarie’s modified fractional derivative is given by 
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where ( ) ( )FWf x f x h  . The fractional derivative is defined as, 
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The proposed Jumarie’s modified Riemann-Liouville derivative given in Eq. (2) is 

strictly equivalent to Eq. (4). Some properties are given by Fractional Leibniz product law 
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Fractional Leibniz formulation 
 

10),0()()(00   fxfxfDI xx                                                    (6) 
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The integration by parts formula is 
 

)()( /)(  uvIuvvuI ba
b
aba                                            (7) 

 
Integration with respect to  )(d . 

Assume )(xf denote a continuous RR   function, we use the following quality for 

the integral with respect to  )(d  
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3. THE ANALYSIS OF HOMOTOPY ANALYSIS METHOD (HAM) 
 
 
Consider the following general differential equation 
 

   ,0, txuFD                                                       (9) 
 

whereFD is a nonlinear differential operator for this problem. According tohomotopy analysis 
method, the zeroth-order deformation equation is 
 

           ,;,,,;,1 0 qtxUFDtxHqtxuqtxULq                                     (10) 

 
where  1,0q  is the embedding parameter, 0  is an auxiliary parameter,   0, txH  is 

an auxiliary function, L  is an auxiliary linear operator,   txu ,0 is an initial guess of  txu ,   

and  qtxU ;,  is an unknown function of the independent variables  x,t  and  q. 

Obviously, when 0q   and  ,1q  it holds 
 

   ,,0;, 0 txutxU     ,,1;, txutxU        (11) 

 
respectively. Using the parameter q, we expand   qtxU ;,   in Taylor series as follows: 
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The auxiliary linear operator, the initial guess, the auxiliary parameter  and the 
auxiliary function   txH ,  are selected in away that the Eq. (12) is convergent at 1q , we 
have 
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We define 
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Differentiating Eq. (10) mtimes with respect to parameterq, then setting 0q and 
finally dividing them by !m , the mth-order deformation equation 
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Finally, we will approximate the HAM solution of Eq. (9) by the following truncated 
series: 
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4. DIELECTRIC RELAXATION PROCESSES 
 
 
The relaxation property is generally expressed in terms of time-domain response 

function  tf  [14]: 
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     i                                                                                                (16)   

 
Classically, relaxation processes are described in terms of the exponential function; 
 

    ,0,exp  ttt                                                                          (17) 
 
which is generally referred to as Maxwell–Debye relaxation. However, in many systems the 
dynamical behavior shows conspicuous deviations from the ideal exponential pattern. 
Experimental results in the time domain are often described in terms of the Kohlrausch-
Williams-Watts (KWW) or stretched exponential function [15] 
 

    ,10,exp   tt                   (18) 
 

or through asymptotic power-laws 



Study of dielectric relaxation process…                                                    Jamshad Ahmad, Muhammad Naeem 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

307

 

 
 

,0,
1

1



 


 t

t
                             (19) 

 
Usually,there are three general relaxation laws for the studies of complex 

systemsstretched exponential (KWW function) [16] 
 

       ,,10,exp    tttf                  (20) 
 

exponential-logarithmic function 
 

      ,lnexp  tBtf                      (21) 
 

algebraic decay 
 

    ,  ttf         (22) 
 

where ,,  and B are the appropriate fitting parameters [17].  

By definition,   is connected to the temporal relaxation function through the 
following relation 
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where      .0 tt  Significant amount of experimental data on disordered systems 
supports the following empirical expressions for dielectric loss spectra, namely, the Cole-Cole 
equation [18] 
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the Cole-Davidson equation [19] 
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and the Havriliak-Negami equation [20] considered as a general expression for the universal 
relaxation law. 
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Havriliak-Negami equation is a combination of the Cole-Cole and Cole-Davidson 

equations.  
 
 

5. THE ISING MODEL AND FRACTIONAL RELAXATION  
 
 
The decay of the spin-spin time correlation functions in a one-dimensional Ising 

model with Glauber [21] dynamics was studied by Brey and Parados[22]. They started that 
the energy of the system in the one-dimensional Ising model for a configuration   is 
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with J a positive constant. The state of the system is specified by the spin vector  ,i   

where 1i is the spin at site .i The evolution of the system is described by Markov process 

with Glauber dynamics. So, the conditional probability ),/,(1/1 ttP  of finding the system 

in the state   at time t, given it was in the state  at time t obeys the master equation 
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where iR  is the configuration obtained from   by flipping the .th spin and )(i  is the 

transition rate for the flip. Following, in the low temperature limit, spin-spin time correlation 
function was found by Brey and Parados [22] in form of a diffusion type equation 
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If Eq. (29) is evaluated to fractional differential equation form, the one can be 

expressed as 
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where  is the Riemann-Liouville fractional differential operator, and the initial condition 
for this equation is 
 

  .0, xexu                        (31) 
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6. APPLICATION OF HOMOTOPY ANALYSIS METHOD  
 
 
According to eq. (10), the zeroth-order deformation can be given by 
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The solution of the mth-order deformation Eq. (14) for  becomes 
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Hence, the HAM series solution  is 
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where    
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0 1
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t n

 is the Mittag-Leffler function in one parameter. We can  readily 

check    
 tEtxu , is an exact solution of Eq. (30). 

    If dipoles are located betweenxand 0xx  , then probability density given by  
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Thus, integrating the dipole correlation function (35) over the all space we can reach 

to the time dependent correlation function 
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where 0x is the average value of x and
02

1

x
is average number of dipoles per unit length.  

If Eq. (37) substituted into Eq. (23), 
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at frequency zone, empiric Cole-Cole type equation is obtained simply as: 
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Moreover, for sufficiently small times Mittag-Leffler function exhibits the same 
behavior with a stretched exponential [23]. 
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which is KWW (Kolraush-William-Watts) function. Using the asymptotic expansions it can 
be written  
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This is the same form with empirical algebraic decay function (22). When the equation 

(29) is solved by generation function method at appropriate boundary condition, which was 
done by [22],   
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is obtained. This expression, at low temperature, converts to Cole-Davidson distribution: 
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where CD  is constant and .
2

1
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Figures shows the solutions of equation (30) for different values of .  

                             
(a) α=.25                                                                  (b) α=.50 

 

                             
(c) α=.75                                                                                (d) α= 1 
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7. CONCLUSION 
 
 
In this study, we applied the Homotopy Analysis Method (HAM) successfully for 

solving fractional diffusion equation obtained from an evolution of Ising Model. A flexible α 
parameter, which is especially used in the forming of the differential equations within the 
fractional order modeling, exhibits that the space of physical processes has a fractional form, 
and irregularity (or chaos) in the nature compels us to use the fractional theory. From the 
results, it is concluded that the method proved fullycompatible with the complexity of the 
problem. A rational level of accuracy reveals the complete reliability and efficiency ofthe 
algorithm. 
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