ORIGINAL PAPER

GROUPLIKE ELEMENTS FOR TRIGONOMETRIC AND HYPERBOLIC COALGEBRAS

GEORGIANA VELICU ${ }^{1}$
Manuscript received: 21.04.2014; Accepted paper: 14.05.2014;
Published online: 30.06.2014.

Abstract

In this paper we determine all grouplike elements of some some classes of coalgebras over a field k , as well as: trigonometric coalgebras and hyperbolic coalgebras. Also we prove that matrix coalgebra $M^{C}(2, k)$ doesn't have any grouplike element.

Keywords: grouplike elements, hyperbolic coalgebras, trigonometric coalgebras.

1. GROUPLIKE ELEMENTS FOR THE TRIGONOMETRIC COALGEBRA

In the next paragraph we first present the construction of a coalgebra, namely trigonometric coalgebra, starting from the well known trigonometric formulas:

$$
\begin{aligned}
& \sin (x+y)=\sin x \cdot \cos y+\cos x \cdot \sin y \\
& \cos (x+y)=\cos x \cdot \cos y-\sin x \cdot \sin y
\end{aligned}
$$

Because the trigonometric function \sin and \cos are linear independent, we can consider a two dimension k - linear space T with basis $\{\sin , \cos \}$, which becomes a coalgebra with the comultiplication $\Delta_{T}: T \otimes T \rightarrow T$ and the counit $\varepsilon_{T}: T \rightarrow k$:

$$
\Delta(\sin)(x+y):=\sin (x+y) \text { and } \Delta(\cos)=\cos \otimes \cos -\sin \otimes \sin
$$

and also:

$$
\varepsilon(\sin)=0 \text { and } \varepsilon(\cos)=1 .
$$

In general, let's consider C_{t} be a two dimension k - linear space with basis $\{s, c\}$, which becomes a coalgebra with the comultiplication:

[^0]$$
\Delta_{t}: C_{t} \otimes C_{t} \rightarrow C_{t}, \Delta_{t}(s)=s \otimes c+c \otimes s, \text { respectively } \Delta_{t}(c)=c \otimes c-s \otimes s,
$$
and the counit:
$$
\varepsilon_{t}: C_{t} \rightarrow k, \varepsilon_{t}(s)=0, \text { respectively } \varepsilon_{t}(c)=1
$$

In this way, the triplet $\left(C_{t}, \Delta_{t}, \varepsilon_{t}\right)$ is a coalgebra, named the trigonometric coalgebra over the field k.

It is very easy to prove that $\left(C_{t}, \Delta_{t}, \varepsilon_{t}\right)$ is in fact a coalgebra. For this we have:

$$
\begin{aligned}
& \left(I \otimes \Delta_{t}\right) \circ \Delta_{t}(s)=\left(I \otimes \Delta_{t}\right)(s \otimes c+c \otimes s)=\left(I \otimes \Delta_{t}\right)(s \otimes c)+\left(I \otimes \Delta_{t}\right)(c \otimes s)= \\
& =s \otimes \Delta_{t}(c)+c \otimes \Delta_{t}(s)=s \otimes(c \otimes c-s \otimes s)+c \otimes(s \otimes c+c \otimes s)= \\
& =s \otimes c \otimes c-s \otimes s \otimes s+c \otimes s \otimes c+c \otimes c \otimes s=\left(\Delta_{t} \otimes I\right) \circ \Delta_{t}(s) .
\end{aligned}
$$

In a similar way, we have:
$\left(I \otimes \Delta_{t}\right) \circ \Delta_{t}(c)=\left(\Delta_{t} \otimes I\right) \circ \Delta_{t}(s)=c \otimes c \otimes c-s \otimes s \otimes c-s \otimes c \otimes s-c \otimes s \otimes s$,
and so, the application Δ_{t} is a comultiplication. Similar, we obtain:

$$
\begin{gathered}
(I \otimes \varepsilon) \circ \Delta_{t}(s)=(I \otimes \varepsilon)(s \otimes c+c \otimes s)=(I \otimes \varepsilon)(s \otimes c)+(I \otimes \varepsilon)(c \otimes s)= \\
=s \otimes \varepsilon(c)+c \otimes \varepsilon(s)=s \otimes 1+c \otimes 0=s+0=s \text { and } \\
\left(\varepsilon_{t} \otimes I\right) \circ \Delta_{t}(s)=\left(\varepsilon_{t} \otimes I\right)(s \otimes c+c \otimes s)=\left(\varepsilon_{t} \otimes I\right)(s \otimes c)+\left(\varepsilon_{t} \otimes I\right)(c \otimes s)= \\
=\varepsilon_{t}(s) \otimes c+\varepsilon_{t}(c) \otimes s=0 \otimes c+1 \otimes s=0+s=s, \text { from where we have: } \\
\left(I \otimes \varepsilon_{t}\right) \circ \Delta_{t}(s)=\left(\varepsilon_{t} \otimes I\right) \circ \Delta_{t}(s)=s, \text { and also: } \\
\left(I \otimes \varepsilon_{t}\right) \circ \Delta_{t}(c)=\left(\varepsilon_{t} \otimes I\right) \circ \Delta_{t}(c)=c .
\end{gathered}
$$

All these relations prove that ε_{t} is a counit on C_{t}.

Remark. The property of Δ_{t} to be a comultiplication can be translated in the following trigonometric formulas:

$$
\begin{aligned}
\sin (x+y+z) & =\sin x \cdot \cos y \cdot \cos z-\sin x \cdot \sin y \cdot \sin z+ \\
& +\cos x \cdot \sin y \cdot \cos z+\cos x \cdot \cos y \cdot \sin z \\
\cos (x+y+z) & =\cos x \cdot \cos y \cdot \cos z-\sin x \cdot \sin y \cdot \cos z- \\
& -\sin x \cdot \cos y \cdot \sin z-\cos x \cdot \sin y \cdot \sin z
\end{aligned}
$$

Now, remind that for a coalgebra C, we call a grouplike element, an element $g \neq 0$ with $\Delta(g)=g \otimes g$ and $\varepsilon(g)=1$. Also, it is well known that the set of all grouplike elements of a coalgebra, denoted by $G(C)$, is a set of linear independent elements.

To find all the grouplike elements of the trigonometric coalgebra, let consider an arbitrary element $x \in\left(C_{t}, \Delta_{t}, \varepsilon_{t}\right)$. Because C_{t} is a k - linear space with basis $\{s, c\}$, then does exist two scalars a and b from k such that:

$$
x=a \cdot s+b \cdot c
$$

We obtain:

$$
\begin{aligned}
\Delta_{t}(x) & =\Delta_{t}(a \cdot s+b \cdot c)=\Delta_{t}(a \cdot s)+\Delta_{t}(b \cdot c)=a \Delta_{t}(s)+b \Delta_{t}(c)= \\
& =a(s \otimes c+c \otimes s)+b(c \otimes c-s \otimes s)=a \cdot s \otimes c+a \cdot c \otimes s+b \cdot c \otimes c-b \cdot s \otimes s
\end{aligned}
$$

and:

$$
\begin{aligned}
& x \otimes x=(a \cdot s+b \cdot c) \otimes(a \cdot s+b \cdot c)=a \cdot s \otimes(a \cdot s+b \cdot c)+b \cdot c \otimes(a \cdot s+b \cdot c)= \\
& \quad=a \cdot s \otimes a \cdot s+a \cdot s \otimes b \cdot c+b \cdot c \otimes a \cdot s+b \cdot c \otimes b \cdot c= \\
& \quad=a^{2} \cdot s \otimes s+a b \cdot s \otimes c+b a \cdot c \otimes s+b^{2} \cdot c \otimes c .
\end{aligned}
$$

Also, because C_{t} is a space of basis $\{s, c\}$, we obtain that $C_{t} \otimes C_{t}$ is also a linear space with the basis $\{s \otimes s, s \otimes c, c \otimes s, c \otimes c\}$. The condition that x is a grouplike element of C_{t} is equivalent to $\Delta_{t}(x)=x \otimes x$, and so we obtain the following relations:

$$
\left\{\begin{array}{l}
a b=a \\
a^{2}=-b \\
b=b^{2}
\end{array}\right.
$$

But $\varepsilon_{t}(x)=1$, then: $\quad \varepsilon_{t}(x)=\varepsilon_{t}(a \cdot s+b \cdot c)=a \cdot \varepsilon_{t}(s)+b \cdot \varepsilon_{t}(c)=a \cdot 0+b \cdot 1=b=1$
We obtain $b=1$ and $a^{2}=-1$.
If $k=\mathbf{R}$, then a does not exist, in this case the trigonometric coalgebra doesn't have any grouplike element. But if $k=\mathbf{C}$, then $a_{1}=i$ or $a_{2}=-i$, and in this case the coalgebra C_{t} have two grouplike elements: $x_{1}=i s+c$ and $x_{2}=i s+c$.

Consequences:

1. The trigonometric coalgebra over the field of real numbers \mathbf{R} is a simple coalgebra, being of dimension two and not having any subcoalgebra of dimension one, this because there are no grouplike elements.
2. In the case of trigonometric coalgebra over the field of complex numbers, C_{t} have two grouplike elements, and so two subcoalgebras of dimension one which are in bijective correspondence with the set $G\left(C_{t}\right)=\left\{x_{1}, x_{2}\right\}$. In this case C_{t} is not a simple coalgebra.

2. GROUPLIKE ELEMENTS FOR THE HYPERBOLIC COALGEBRA

Let's remind two hyperbolic formulas:

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}=\frac{e^{2 x}-1}{2 e^{x}} \text { and } \sinh (x)=\frac{e^{x}+e^{-x}}{2}=\frac{e^{2 x}+1}{2 e^{x}} .
$$

It is easy to prove that:

$$
\begin{aligned}
& \sinh (x+y)=\sinh (x) \cdot \cosh (y)+\cosh (x) \cdot \sinh (y) \\
& \cosh (x+y)=\cosh (x) \cdot \cosh (y)+\sinh (x) \cdot \sinh (y)
\end{aligned}
$$

In a similar way like in the case of the trigonometric coalgebra, we can define a new one, named the hyperbolic coalgebra C_{h}. This is a k - linear space with basis \{sinh, cosh\} on which we can define a comultiplication and a counit:

$$
\begin{gathered}
\Delta_{h}(\sinh)=\sinh \otimes \cosh +\cosh \otimes \sinh \text { and } \Delta_{h}(\cosh)=\cosh \otimes \cosh +\sinh \otimes \sinh , \\
\varepsilon_{h}(\sinh)=0 \text { and } \varepsilon_{h}(\cosh)=1 .
\end{gathered}
$$

Because the hyperbolic functions sinh and cosh are linear independent, we can generalize this to a coalgebra C_{h}, a k - linear space of two dimension with basis $\{s h, c h\}$, on which we define two linear applications:

$$
\begin{gathered}
\Delta_{h}: C_{h} \rightarrow C_{h} \otimes C_{h}, \text { by } \Delta_{h}(s h)=s h \otimes c h+c h \otimes \operatorname{sh} \text { and } \Delta_{h}(c h)=c h \otimes c h+s h \otimes s h \\
\text { and } \varepsilon_{h}: C_{h} \rightarrow k, \varepsilon_{h}(s h)=0 \text { and } \varepsilon_{h}(c h)=1,
\end{gathered}
$$

in this way we obtain a new coalgebra, $\left(C_{h}, \Delta_{h}, \varepsilon_{h}\right)$ called the hyperbolic coalgebra.
It is easy to prove that Δ_{h} and ε_{h} are the comultiplication and the counit of this coalgebra, means we have:

$$
\begin{gathered}
\left(I \otimes \Delta_{h}\right) \otimes \Delta_{h}(s h)=\left(\Delta_{h} \otimes I\right) \otimes \Delta_{h}(s h)=s h \otimes c h \otimes c h+s h \otimes s h \otimes s h+ \\
+c h \otimes \operatorname{sh} \otimes c h+c h \otimes c h \otimes c h \\
\left(I \otimes \Delta_{h}\right) \otimes \Delta_{h}(c h)=\left(\Delta_{h} \otimes I\right) \otimes \Delta_{h}(c h)=c h \otimes c h \otimes c h+s h \otimes \operatorname{sh} \otimes c h+ \\
+c h \otimes \operatorname{sh} \otimes \operatorname{sh}+\operatorname{sh} \otimes c h \otimes s h
\end{gathered}
$$

and:

$$
\begin{aligned}
& \left(I \otimes \varepsilon_{h}\right) \otimes \Delta_{h}(s h)=\left(\varepsilon_{h} \otimes I\right) \otimes \Delta_{h}(s h)=s h \\
& \left(I \otimes \varepsilon_{h}\right) \otimes \Delta_{h}(c h)=\left(\varepsilon_{h} \otimes I\right) \otimes \Delta_{h}(c h)=c h .
\end{aligned}
$$

Now, let's consider $x \in\left(C_{h}, \Delta_{h}, \varepsilon_{h}\right)$ an arbitrary element. Then, there exist two scalars a and b from k such that:

$$
x=a \cdot s h+b \cdot c h .
$$

Using the comultiplication Δ_{h} we obtain:

$$
\begin{aligned}
\Delta_{h}(x) & =\Delta_{h}(a \cdot s h+b \cdot c h)=\Delta_{h}(a \cdot s h)+\Delta_{h}(b \cdot c h)=a \Delta_{h}(s h)+b \Delta_{h}(c h)= \\
\quad= & a(s h \otimes c h+c h \otimes \operatorname{sh})+b(c h \otimes c h-s h \otimes s h)= \\
& =a \cdot s h \otimes c h+a \cdot c h \otimes \operatorname{sh}+b \cdot c h \otimes c h-b \cdot s h \otimes s h
\end{aligned}
$$

and because of the bilinear tensor product we have:

$$
\begin{aligned}
x \otimes x & =(a \cdot s h+b \cdot c h) \otimes(a \cdot s h+b \cdot c h)= \\
& =a \cdot s h \otimes(a \cdot s h+b \cdot c h)+b \cdot c h \otimes(a \cdot s h+b \cdot c h)= \\
& =a \cdot s h \otimes a \cdot s h+a \cdot s h \otimes b \cdot c h+b \cdot c h \otimes a \cdot s h+b \cdot c h \otimes b \cdot c h= \\
& =a^{2} \cdot s h \otimes s h+a b \cdot s h \otimes c h+b a \cdot c h \otimes s h+b^{2} \cdot c h \otimes c h .
\end{aligned}
$$

But C_{h} is a k vector space of basis $\{s h, c h\}$, so the tensor coalgebra $C_{h} \otimes C_{h}$ is a space of basis $\{s h \otimes s h, s h \otimes c h, c h \otimes s h, c h \otimes c h\}$, and so x is a grouplike element if $\Delta_{h}(x)=x \otimes x$, which is equivalent to:

$$
\left\{\begin{array}{l}
a b=a \\
a^{2}=b \\
b=b^{2}
\end{array}\right.
$$

Much more: $\varepsilon_{h}(x)=1$, and so we obtain:

$$
\varepsilon_{h}(x)=\varepsilon_{h}(a \cdot s+b \cdot c)=a \cdot \varepsilon_{h}(s)+b \cdot \varepsilon_{h}(c)=a \cdot 0+b \cdot 1=b=1
$$

Finaly we have $b=1$ and $a^{2}=1$, with two solutions $a_{1}=1$ and $a_{2}=-1$, for $k=\mathbf{R}$ and also for $k=\mathbf{C}$. This shows us that the hyperbolic coalgebra C_{h} have two grouplike elements: $x_{1}=s h+c h$ and $x_{2}=s h-c h$, which are linear independent.

Consequence. The hyperbolic coalgebra C_{h} is not a simple coalgebra (having two grouplike elements, this coalgebra admit two subcoalgebras of dimension one).

3. GROUPLIKE ELEMENTS OF MATRIX COALGEBRA $M^{C}(2, k)$

Proposition. The matrix coalgebra $M^{C}(2, k)$ doesn't have any grouplike element.

Proof: The matrix coalgebra $M^{C}(2, k)$ is a k vector space of dimension $n^{2}=4$ with basis $\left\{e_{11}, e_{12}, e_{21}, e_{22}\right\}$. Let $x \in M^{C}(2, k)$ be an arbitrary element. Then:

$$
x=a_{11} e_{11}+a_{12} e_{12}+a_{21} e_{21}+a_{22} e_{22}, \quad a_{i j} \in k, i, j=\overline{1,2}
$$

Let's suppose that x is a grouplike element, this is equivalent to $\Delta(x)=x \otimes x$ and $\varepsilon(x)=1$. We obtain:

$$
\begin{aligned}
\Delta(x)= & a_{11} e_{11} \otimes e_{11}+a_{11} e_{12} \otimes e_{21}+a_{12} e_{11} \otimes e_{12}+a_{12} e_{12} \otimes e_{22}+ \\
& +a_{21} e_{21} \otimes e_{11}+a_{21} e_{22} \otimes e_{21}+a_{22} e_{21} \otimes e_{12}+a_{22} e_{22} \otimes e_{22}
\end{aligned}
$$

and

$$
\begin{aligned}
x \otimes x & =a_{11}^{2} e_{11} \otimes e_{11}+a_{11} a_{12} e_{11} \otimes e_{12}+a_{11} a_{21} e_{11} \otimes e_{21}+a_{11} a_{22} e_{11} \otimes e_{22}+ \\
& +a_{12} a_{11} e_{12} \otimes e_{11}+a_{12}^{2} e_{12} \otimes e_{12}+a_{12} a_{21} e_{12} \otimes e_{21}+a_{12} a_{22} e_{12} \otimes e_{22}+ \\
& +a_{21} a_{11} e_{21} \otimes e_{11}+a_{21} a_{12} e_{21} \otimes e_{12}+a_{21}^{2} e_{21} \otimes e_{21}+a_{21} a_{22} e_{21} \otimes e_{22}+ \\
& +a_{22} a_{11} e_{22} \otimes e_{11}+a_{22} a_{12} e_{22} \otimes e_{12}+a_{22} a_{21} e_{22} \otimes e_{21}+a_{22}^{2} e_{22} \otimes e_{22} .
\end{aligned}
$$

From these, we have:

$$
\begin{cases}a_{11}=a_{11}^{2} & a_{11} a_{21}=0 \\ a_{11}=a_{12} a_{21} & a_{11} a_{22}=0 \\ a_{12}=a_{11} a_{12} & a_{12} a_{11}=0 \\ a_{12}=a_{12} a_{22} & a_{12}^{2}=0 \\ a_{21}=a_{21} a_{11} & a_{21}^{2}=0 \\ a_{21}=a_{22} a_{21} & a_{21} a_{22}=0 \\ a_{22}=a_{21} a_{12} & a_{22} a_{11}=0 \\ a_{22}=a_{22}^{2} & a_{22} a_{12}=0\end{cases}
$$

with the solution :

$$
a_{11}=a_{12}=a_{21}=a_{22}=0 \Leftrightarrow x=0,
$$

These prove us that matrix coalgebra $M^{C}(2, k)$ doesn't have any grouplike element.

Consequence. Matrix coalgebra $M^{C}(2, k)$ doesn't have subcoalgebras of dimension one.

In general, the matrix coalgebra $M^{C}(n, k)$ doesn't have any grouplike element. The proof of this remark, using only the definition of the grouplike elements is not so simple and involve so many hard calculations. A simple poof of this we find in [1], ex. 1.4.17, where it is used the fact that $M^{C}(n, k)$ is the dual coalgebra of the matrix algebra $M_{n}(k)$, and so the set of all grouplike elements is $G\left(M^{C}(n, k)\right)=A \lg \left(M_{n}(k), k\right)$. Much more, there is no morfism of coalgebras $f: M_{n}(k) \rightarrow k$ with the kernel $\operatorname{ker}(f)$ coideal in $M_{n}(k)$, so there are only two situations: $\operatorname{ker}(f)=0$ and $\operatorname{ker}(f)=M_{n}(k)$. In case $\operatorname{ker}(f)=0$ we have that f is injective, impossible because the dimensions of $M_{n}(k)$ and k. Also, the case $\operatorname{ker}(f)=M_{n}(k)$ is impossible because $f(1)=1$. Finally we have $G\left(M^{C}(n, k)\right)=0$.

REFERENCES

[1] Dascalescu, S., Nastasescu, C., Raianu, S., Hopf algebras - An introduction, Marcel Dekker Inc., New York, 2001.
[2] Sweedler M.E., Hopf algebras, Mathematical lecture notes series, W.A.Benjamin Inc, New York, 1969.

[^0]: ${ }^{1}$ Valahia University of Targoviste, Faculty of Sciences and Arts, 130024 Targoviste, Romania.
 E-mail: neacsugeorgiana@yahoo.com.

