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1. INTRODUCTION  
 

 
In almost all branches of science, we meet situations in which we are forced to 

estimate big factorials. One of the most known formulas used is the Stirling’s formula: 
 

( )1 ~ 2
xxx x

e
Γ π  +  

 
 

 
but more accurate results are obtained using the following formula due to Ramanujan [5]: 

 

( ) ( ) 3 26
1 1 11 ~ : 2
2 8 240

xxx x x x x
e

Γ ρ π  + = + + + 
 

 

 
Mortici [2] introduced the following new approximation formulas of Ramanujan's 

type: 

( ) 24
1 11 ~ 2
3 18

xxx x x
e

Γ π  + + + 
 

 

( ) 4 3 28
2 2 11 81 ~ 2
3 9 405 1215

xxx x x x x
e

Γ π  + + + + − 
 

 

and 

( ) 5 4 3 210
5 25 89 95 21431 ~ 2
6 72 1296 31104 1306368

xxx x x x x x
e

Γ π  + + + + − + 
 
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that are much stronger than Ramanujan formula. 
The general method for establishing increasingly more accurate formulas of even 

order 

( ) 21 ~ 2 ...
x

k kxx x
e

Γ π  + + 
 

 

 
is also presented by Mortici [3]. This result was also proven by Chen and Lin in [1]. 

We propose in this paper some approximation formulas of Ramanujan type of odd 
order, namely: 

( )
2 1 2 1 1

2 1 2 2 2
11 ~ 2 ...

x s s
s

s
xx x a x a x
e

Γ π
+ −

+ + + + + 
 

                             (1) 

 
This is an approximation formula at least in the general sense of an approximation 

formula ( ) ( )~f x g x  for which ( )
( )

lim 1x

f x
g x→∞ = , since: 

 
( )

2 1 2 1 1
2 1 2 2 2

1

1
lim

2 ...
x s sx

s
s

x

x x a x a x
e

Γ

π
+ −→∞

+

+

  + + + 
 

( ) ( )
2 1

2 1
2

1 1
lim lim 1

22
xx sx xs

x x
xx xx ee

Γ Γ

ππ
+→∞ →∞+

+ +
= = =

  
     

 

 
 

2. RESULTS AND DISCUSSION 
 
 
Formula (1) can be equivalently written as:  

 

( ) 12 1
11 ~ 2 ...

x
s ss

s
xx x x a x x a x
e

Γ π −+ + + + + 
 

 

 
We introduce the following class of approximations: 

 

( )1 ~ 2
x

sxx x x a x
e

Γ π  + + 
 

                                        (2) 

 
depending on a real parameter a. 

By using a method first introduced by Mortici in [4], we search for the value of a that 
provides the most accurate approximation (2). In this sense, we define the sequence wn by the 
relations 

( )1 2 exp
n

s
n

nn n n a n w
e

Γ π  + = + ⋅ 
 

, 1,  2,  3,  . . .n =  

 
also called the relative error sequence. An approximation (2) will be considered more accurate 
as wn goes faster to zero. As 
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( ) ( )
3 13 1
2 22 2

1
1 1 1ln 1 1 ln 1 1 ln

3 3n nw w n n a n n an
n+

    − = + − + + + + − +   
    

 

 
we use a computer software for symbolic computation to obtain 

 
2

1 2 3 4

1 1 1 1 1 1 1 1
12 3 3 3 12n nw w a a a O

n n n+
     − = − + + − +     
     

                         (3) 

 
According to a result stated by Mortici [4], wn converges as n– (k – 1), when wn – wn+1 

converges with a rate of convergence n-k. 
In consequence, the best estimate is obtained when the first coefficient in (3) vanishes, 

that is 
1 1 0

12 3
a− =  

 

The corresponding value 1
4

a =  produces the following approximation formula as 

n →∞ : 

( ) 11 ~ 2
4

x

s
xx x x x
e

Γ π  + + 
 

 

 
This is much stronger than Stirling's formula, since: 

 

( )12 2 1
4

x x

s
x xx x x x x
e e

π π Γ   < + < +   
   

 

 
By using the same procedure, we deduced the following approximations of order five 

and seven: 

( ) 25
5 51 ~ 2

12 72

xxx x x x x x
e

Γ π  + + + 
 

 

respective 
 

( ) ( ) 3 27
7 49 7071 ~ : 2

12 288 51840

xxx x x x x x x x x
e

Γ τ π  + = + + + 
 

             (4) 

 
The accuracy of such formulas increases as the root order is higher. Already our new 

formula (4) gives slightly better results than Ramanujan's formula, as we can see from the 
following comparison table. 

 
 
 
 
 
 
  
 

x  
( )
( )

1
1

x
x

Γ
ρ

+
−  

( )
( )

1
1

x
x

Γ
τ

+
−  

50 1.4968 × 10-10 1.4596 × 10-10 
100 9.4519 × 10-12 9.2170 × 10-12 
250 2.4345 × 10-13 2.3741 × 10-13 
1000 9.5389 × 10-16 9.3021 × 10-16 
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Let us remark that (4) can be equivalently written as: 

 

( ) ( )
1
7

2

7 49 7071 ~ : 2 1
12 288 51840

xxx x x
e x x x

Γ τ π    + = + + +   
   

 

 
Now we can see that this form allows us to establish similar formulas of type (4) of 

arbitrarily root order. 
The method consists in transformation of the standard Stirling series of the logarithm 

of the gamma function 
 

( ) 3 5 7

1 1 1 11 ~ 2 exp ...
12 360 1260 1680

xxx x
e x x x x

Γ π    + − + − +   
   

 

 
which can be rewritten as: 

 

( )
1

3 5 71 ~ 2 exp ...
12 360 1260 1680

x sx s s s sx x
e x x x x

Γ π     + − + − +    
    

 

 
for every s > 0. Finally, the transition: 

 
1 2

3 5 7exp ... 1 ...
12 360 1260 1680

s s s s c c
x x x x x x

 − + − + = + + + 
 

 

 
can be performed using the following admissible transformation in asymptotic series theory: 

 
2 3

exp 1 ...
1! 2! 3!
t t tt = + + + +  
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