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Abstract. We construct the asymptotic series and some estimates for a sequence
converging to Euler-Mascheroni constant presented by Mortici in [3].
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1. INTRODUCTION

The Euler-Mascheroni constant y =0,577215..., that was firstly studied by the Swiss

matematician Leonhard Euler and ltalian mathematician Lorenzo Mascheroni, has been
defined as the limit of the sequence

1 1 1
v, =l+=+=+..+=—Inn.
2 3 n

It is not yet known whether y is a rational number or not; the inexistence of sufficient
fast convergence to y seems to be the key of the problem. In the recent past, many authors
gave new fast convergences to y.

We mention here the result of Mortici [3] who presented the sequences

u —1+£+1+ + ! + L —In[n+i]
"T273 7 -1 (6-26)n V6
and
v —1+1+1+ + 1 + L —In(n—ij
"2 3 7 n-1 (6+26)n V6

showing that they converge to » with the speed of convergence at n~°. Mortici [3] introduced
the following sequence

tn=1+£+1+...+i+i—iln n? -1 (1)
2 3 n-1 2n 2 6
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as the arithmetic mean of u, and v, and proved that t, converges to the limit y with the speed
of convergence at n™*. By using a method presented in [2], Mortici proved only that

lim n‘ _7):%.
2. THE RESULTS
We prove the following estimates for t, .
Theorem 1. For every integer n>1, we have: 12 <t, —-y< 1 :
720n* 9072n® " 720n*

Proof: Let us define the following sequences

11 29 11
=(t. —y)— - and =(t, —y)-
Py =(t, =7) (720n4 9072n6j % =(t, ~7) 720n*

that converge to zero. In order to prove that p, >0 and g, <0, it suffices to demonstrate that
(p, )., is strictly decreasing and (g, ) _, is strictly increasing.

Let p,.,, — p,=f(n) and q,,, —q, =g(n), where

f(x) L +i—%ln((X+l)2—%j+%ln(x2—%]

T ox+2  2x

~ 129 +(11_29)
720(x +1)"  9072(x+1)° ) \720x* 9072x°

and
1 1 1 , 1y 1. (, 1 11 11
X) = +——=In[(x+1) == [+=In| x* == |- + .
9() 2X+2 2x 2 (( ) 6] 2 ( 6) 720(x +1)*  720x*
We have
£1(x) = T(x)
7560x” (x +1)’ (12 + 6x° +5)6x> —1)
and
. S(x
5=~ o

180x° (x +1)°(12 + 6x +5)6x* —1)
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with
T (x) =1456645 + 8692767(x — 1)+ 22115343(x —1)° +31509417(x — 1)’
+27599465(x —1)" +15254631(x —1)° + 5203555(x —1)° +1002456(x —1)’
+83538(x - 1)°
and

S(x) =3935 + 23631(x —1) + 50006(x —1)* +51576(x —1)° + 28171(x —1)"
+7830(x —1)° +870(x —1)°.

Evidently, f'>0 on (1,) and g'<0 on (1,).It follows that f is strictly increasing
on (1,») and g is strictly decreasing on (1,). Because f ()= g(x)=0, we obtain f <0
on (L) and g>0 on (L,0).Thus, (p,),., is strictly decreasing and (q, )., is strictly
increasing. As we explained, the conclusion follows. M

Now we construct the asymptotic series of the sequence t,, using the representation of
the harmonic sum

n=1

h, _1+1+1+ +L+l
2 3 n-1 n

in terms of digamma function
1
h, =y+—=+w(n).
n

Here y is the digamma function defined by

" (x)

d
v ()= (INT())= T

See, e.g., [1]. The digamma function has the following asymptotic expansion

z, B,

X Inx———
vx)= 2X Z:2kx2k

where B is the jth Bernoulli number given by

We are in a position to give the following

Theorem 2. The following asymptotic series is valid as n — oo
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21 (1 1
t =y+ > —<—-B,, }——.
n =7 kz_;‘Zk{Gk Zk}nz"
Proof: We have

t =h N Y
2n 2 6

1 1 1 1
=y+=—+y()——-=Inn* - =
rrp oS ( 6)

and the conclusion follows. N
Explicitly, we have

11 29 221 6469
+ - + - +
720n* 9072n® 51840n® 855360nY

t, =y

and by truncation of this series at any term, approximations of any accuracy n ¢ are
obtained. Note that the first two terms for estimating t, in Theorem 1 are the first terms of the

previous asymptotic series.
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