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1. INTRODUCTION  
 
 

The Euler-Mascheroni constant ...577215,0=γ , that was firstly studied by the Swiss 
matematician Leonhard Euler and Italian mathematician Lorenzo Mascheroni, has been 
defined as the limit of the sequence 
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It is not yet known whether γ is a rational number or not; the inexistence of sufficient 

fast convergence to γ seems to be the key of the problem. In the recent past, many authors 
gave new fast convergences to γ. 

We mention here the result of Mortici [3] who presented the sequences 
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showing that they converge to γ  with the speed of convergence at 3−n . Mortici [3] introduced 
the following sequence 
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as the arithmetic mean of un and vn and proved that nt  converges to the limit γ  with the speed 
of convergence at 4−n . By using a method presented in [2], Mortici proved only that 
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2. THE RESULTS 
 
 

We prove the following estimates for nt . 
 

Theorem 1. For every integer 1≥n , we have:   .
720

11
9072

29
720

11
464 n

t
nn n <−<− γ  

 
Proof: Let us define the following sequences 
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that converge to zero. In order to prove that 0>np  and 0<nq , it suffices to demonstrate that 
( ) 1≥nnp  is strictly decreasing and ( ) 1≥nnq  is strictly increasing. 

Let )(1 nfpp nn =−+  and )(1 ngqq nn =−+ , where 
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We have 
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with 
 

( ) ( ) ( )32 131509417122115343186927671456645)( −+−+−+= xxxxT  
( ) ( ) ( ) ( )7654 1100245615203555115254631127599465 −+−+−+−+ xxxx  

( )8183538 −+ x  
 
and 
 

( ) ( ) ( ) ( )432 1281711515761500061236313935)( −+−+−+−+= xxxxxS  
( ) ( ) .187017830 65 −+−+ xx  

 
Evidently, 0'>f  on ),1( ∞  and 0'<g  on ),1( ∞ .It follows that f  is strictly increasing 

on ),1( ∞  and g  is strictly decreasing on ),1( ∞ . Because 0)()( =∞=∞ gf , we obtain 0<f  
on ),1( ∞  and 0>g  on ),1( ∞ .Thus, ( ) 1≥nnp  is strictly decreasing and ( ) 1≥nnq  is strictly 
increasing. As we explained, the conclusion follows.                                                                � 

Now we construct the asymptotic series of the sequence nt , using the representation of 
the harmonic sum 
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in terms of digamma function 
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Here ψ  is the digamma function defined by 
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See, e.g., [1]. The digamma function has the following asymptotic expansion 
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where jB is the j th Bernoulli number given by 
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We are in a position to give the following 

 
Theorem 2. The following asymptotic series is valid as :∞→n  
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Proof: We have 
 







 −−−=

6
1ln

2
1

2
1 2n
n

ht nn  

 







 −−−++=

6
1ln

2
1

2
1)(1 2n
n

n
n

ψγ   

 







 −−+−+= 26

11ln
2
1

2
1ln)(

nn
nnψγ  

 

∑∑
∞

=

∞

=

+−=
1

2
1

2
2

6
1

2
1

2 k
kk

k
k

k

nkkn
B

γ  

 

kkk
k n

B
k 22

1

1
6
1

2
1







 −+= ∑

∞

=

γ  

 
and the conclusion follows.                                                                                                        � 

Explicitly, we have 
 

...,
855360

6469
51840

221
9072

29
720

11
10864 +−+−+=

nnnn
tn γ  

 
and by truncation of this series at any term, approximations of any accuracy kn 2−  are 
obtained. Note that the first two terms for estimating nt  in Theorem 1 are the first terms of the 
previous asymptotic series. 
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