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1. INTRODUCTION  
 

 
Theories in connection with the unification of bilateral or trilateral generating relations 

for various special functions are of greater importance in the study of special functions. For 
previous works in this direction, one can see the works [1-8] and [9-16] in connection with 
the unification of bilateral and mixed trilateral generating relations. 

In this paper, we have made an attempt to present a novel result in connection with the 
unification of trilateral generating relations for certain special functions by group theoretic 
method, of course when suitable continuous transformations  group can be constructed for the 
special function under consideration, with Tchebycheff  polynomials. In fact, this method [17] 
is based on the theory of one parameter group of continuous transformations by means of 
which any unilateral generating relation involving a special function can be  transformed in to 
a  bilateral generating relation and then into a trilateral generating relation with Tchebycheff  
polynomial by means of the relation [18]: 
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Furthermore, we would like to mention that in course of application of our result, we 

get a good number of theorems on generating relations for various special functions. 
The detailed discussion is given below: 
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2. GROUP-THEORETIC DISCUSSION 
 
 

Let us first consider the following unilateral generating relation, 
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where )()( xpn

α  is a special function of degree n and of parameterα and na is independent of 
wx, .  

Replacing w  by vwz  and then multiplying both sides of (2.1) by αy  we get, 
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We now suppose that for the above special function, it is possible to define a linear 

partial differential operator R, which generates a continuous transformations group as follows:  
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The left number of (2.5), with the help of (2.4), becomes 
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The right number of (2.5), with the help of (2.3), becomes 
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Now equating (2.6) and (2.7) and then putting ,1== zy we get 
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Now to convert the above bilateral generating relation into a trilateral generating 

relation with Tchebycheff polynomial, we notice that  
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Thus we have prove the following theorem. 
 
Theorem 1. If there exists a unilateral generating relation of the form: 
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The above theorem does not seem to have appeared in the earlier works. 
 
Corollary 1. If we put 0=r , we get the result found derived in [16]. 
 
We now proceed to give a good number of applications of our result. 
 

 
3. APPLICATIONS 
 
 

Below we give some applications of our result. 
 
Application 1: At first we take 
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So by comparing (3.2), (3.3) with (2.3),(2.4), we get  
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Therefore, by the application of our theorem, we get the following result on trilateral 

generating relations with Tchebycheff polynomials. 
 
Theorem 2: If 
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which seems to be new. 
 
Corollary 2: If we put 0=r in the above theorem, we get the following result. 
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3.1. SOME SPECIAL CASES OF INTEREST 
 
On specializing the parameters 1== ba and α+= 1m in the Theorem 2, we get the 

following result on Laguerre  polynomials:  
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Corollary 3: If we put 0=r in the above result, we get the result found derived in 

[19]. 
            
Application 2:  Now we take 
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Then by comparing (3.7), (3.8) with (2.3), (2.4), and finally applying our theorem 

(Theorem 1), we get the following result on trilateral generating relations with Tchebycheff 
polynomials: 
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Then by comparing (311), (3.12) with (2.3), (2.4), and finally applying our theorem 

(Theorem 1), we get the following result on trilateral generating relations with Tchebycheff 
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Corollary 5: If we put 0=r in the above theorem, we get the result found derived in 
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Then by comparing (3.16), (3.17) with (2.3), (2.4), and finally applying our theorem 

(Theorem 1), we get the following result on trilateral generating relations with Tchebycheff 
polynomials: 
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Corollary 6: If we put 0=r in the above theorem, we get result found derived in [19] 
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Then by comparing (3.20), (3.21) with (2.3), (2.4), and finally applying our theorem 

(Theorem 1), we get the following result on trilateral generating relations with Tchebycheff 
polynomials: 
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Corollary 7: If we put 0=r in the above theorem, we immediately get the result 
found derived in [19]. 

                              
Now if in place of R, we consider the following operator R1 [23]: 
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Then by the application of our theorem, we get the following result (analogous to 

Theorem 6) on bilateral generating relation involving Jacobi polynomial. 
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            Application 6: Finally, we take 
);;,()( 12

)( xvrnFxp rn β+−=α
+  with .v=α   

     
Then we consider the operator R , where  
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such that 
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 (3.29) 

 
Then by comparing (3.28), (3.29) with (2.3), (2.4) and finally applying our theorem 

(Theorem 1), we get the following result on trilateral generating relations with Tchebycheff 
polynomials 

 
Theorem 8: If 
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 (3.31) 

where 

,);;,(
)!(

)1(
),( 12

0

kkn
n

k
kn vxvrnF

kn
v

avx β+−
−
+−

=σ −

=
∑  

)1( 2
1 −+= uuwρ     and )1( 2

2 −−= uuwρ  
(3.32) 

 
which does not seem to have appeared in the earlier works. 

 
Corollary 9: If we put 0=r in the above theorem, we get the result found derived in 

[19].      
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4. CONCLUSION 
 
 
From the above discussion, it is clear that one may apply Theorem-1 in the case of 

other polynomials and functions existing in the field of special functions subject to the 
condition of construction of continuous transformations group for the said special function. 
Furthermore, the importance of the above theorems (2-8) lies in the fact that whenever one 
knows a unilateral generating relation of the form (3.4, 3.9 etc.) then the corresponding 
trilateral generating functions can at once be written down from (3.5, 3.10 etc.). Thus, one can 
get a large number of trilateral generating functions with Tchebycheff polynomials by 
attributing different suitable values to na . 
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