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Abstract. In this thesis, we investigate the thermal transport properties of graphene 

using the Boltzmann approximation. Based on the analytical solution of Boltzmann equation 
for coherent and non-coherent electron-hole states, the minimum electrical and thermal 
conductivities are studied. We solve the Boltzmann equation in the chirality basis by 
considering off-diagonal elements of the distribution function due to the electron-hole 
coherency effect and calculate the thermal transport properties of graphene. Finally, we 
obtain the thermal coefficients as functions of temperature. Our results show that the thermal 
conductivity in non-coherent electron-hole state has a linear behavior at low temperature. 
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1. INTRODUCTION  
 

 
Single graphite layers (graphene) have been found in the free state only recently [1], 

and their transport properties have immediately attracted much attention from both 
experimental [2 - 4] and theoretical [5 - 16] invest number of very unusual transport 
properties including (i) the conductivity does not vanish at zero carrier con- centration 
(minimum conductivity phenomena), (ii) the minimum conductivity does not depend on the 
temperature. Besides these unconventional transport properties many related phenomena have 
been studied in graphene such as weak localization [14 - 16], the Klein paradox [17], 
tunneling conductance of normal metal-insulator- superconductor [18] and n-p [19] junctions, 
Andreev re- flection [20], Josephson effect [21, 22], photon-assisted electron transport [23], 
integer [24] and fractional quantum Hall effect [25]. The remarkable transport proper- ties of 
graphene are usually attributed to the particular spectrum of excitations [26] which consists of 
two conical bands and is described by a two-dimensional analog of the relativistic Dirac 
equation. For a review concerning the history, fabrication, fundamental properties, and ing the 
history, fabrication, fundamental properties, and future applications of graphene we refer to 
very recent article [26]. To investigate the transport properties (i) and (ii) of graphene several 
different approaches have been applied including the Kubo formalism [5 - 7, 9 - 11], and 
direct calculations of the transmission probability (Landauer formula) [8, 11, 12]. In this 
Letter we start from a direct analytical solution of the Boltzmann equation for Dirac fermions. 
Though the model is quasi classical, the most remarkable features noted above are 
reproduced. In what follows we derive analytical expressions for the electrical and thermal 
conductivity of graphene. 
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2. THERMAL CONDUCTIVITY AT NON-COHERENCE HOLE-ELECTRON’S 
STATES 

 
 
Dispersing and effective potential of carrier in grapheme with impurities is shown in 

the following formula: 

1
                                        (1) 

 

which in it, q and eZ are in order electrostatic carrier's charge and impure atom charge and R 
is a camouflage radius or the same Thomas Fermi's radius. 

In uniform electrical field, E in Boltzmann's equation is in the following form 
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which in it,  are speed operator of diagonal elements at chirality basis. kv

We solve Boltzmann's equation, when an electrical field is zero and there is 
just temperature gradient.  

 

                            (3) 

 
After calculation, we can show, density of thermal current in the following 

form:  
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This formula in comparison with J= - K T  flow of thermal energy or 

transmission energy, so we have: 
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We have following figure for the non-coherence electron – hole in the low 
temperatures say that . According to this figure we conclude that in the low 

temperatures, conductivity change with temperature as linear. 
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Fig. 1. Thermal conductivity in low temperature for non-coherent electron-hole states. 

 

And we introduce non-coherence hole-electron’s parameter in the following 
form: 
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By usage of first-grade’s relaxation time approximation,   
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is independent of K and is in the following form 
 

4444 4  VRv                                                         (5) 
 
 
3. THERMAL CONDUCTIVITY AT COHERENT HOLE-ELECTRON’S POSITION 
 
 

In non-coherence hole-electron’s position, we can relinquish from off-
diagonal elements of distribution function. But, totally, we describe the particle by 
Dirac Hamiltonian, it means: 

 
                        (6) 

 
That     is Fermi’s speed (speed of graphene's carriers) and 

and are Paoli spinors. Necessarily, it is not only at  k    or k states, but also, 

in the superposition of these states and in this case, coherent hole-electron’s states 
occurs. In this state, distribution function of non-coherence hole-electron’s 
parameter is very little, it means  kf̂ is little, and is, as a matrix 2×2 with off-
diagonal and off-zero elements. With temperature gradient, the answer results from 
(3) formula and pay attention to off-diagonal elements, time evolution of distribution 
function results from (7) formula. 
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With pay attention to timeevolutionof matrix of density after every 

scatteringis in the following form: 
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and from  formula, results (9) formula. 
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With analytical solving of above equation, off-diagonal elements of 

distribution function results from following form: 
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With pay attention to, share’s unbalance sentences of distribution function at 
density of thermal current and putting elements of distribution function at an 
unbalance state, we have 
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uncertainty of energy that occur between two sequences scattering events by time difference 
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In coherence electron – hole state  and in the low temperatures thermal 
conductivity as following  
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Similarly, we can with the presence of an electrical field,investigate 

electrical conductivity at coherent hole-electron’s state. 
 
 
4. CALCULATION OF THERMAL CONDUCTIVITY BY USE OF TRANSPORT 
COEFFICIENTS 
 
 

For calculation of thermal conductivity’s equation,thermal conductivity 
should relate thermal current to temperature gradient,if there is no electrical 
current,so we have  
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In non-current and non-zero temperature gradient at Z axis, we can write 
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Thus, thermal conductivity of electrons is in the following form 
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After calculations, we have thermal conductivity’s formula 
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By usage of Mott’s famous formula, we have 

 

 



















T

TBF
e

e

eT
T

T

kT

h 

 
1

)1ln(
3

222

                                            

(19) 

 
In this formula,   is non-coherence hole-electron’s parameter. 
In following diagram, thermal conductivity is indicating with calculating 

above sentences of (19) formula. 
 
 

 
Fig. 2. Thermal conductivity than the temperature for the different scattering values α.  

In here  1x  . 
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Fig. 3. Thermal conductivity than the temperature with considering higher order of relation (19), (red 
diagram). Linear behavior thermal conductivity in terms of temperature in low temperatures (dark 

diagram). 

 
Fig. 4. Thermal conductivity in terms of the temperature. 
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