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Abstract. In this paper we give some integral forms of some refinements and
counterparts of Radon’s inequality using recent generalizations.
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1. INTRODUCTION

We will recall the inequality of J. Radon which was published in [6].
For every real numbers p>0,x, >0,a, >0 for 1<k <n, we have the following
inequality:

In [7], the authors consider two n-tuples a=(a,,a,,..a,),b=(b,b,,..,b,) where
ab=(a,b,,a,b,,...,a,b,) and a" =(a/",a;,...,a,"), for any real number m.

Then a>0and b>0 if a, >0 and b, >0 forevery 1<i<n.

We consider the expression:
n gP (Zai)p
APla;b) =y -
i=1 bi (z bi)p—l

i=1

for real number p >1 and for n-tuples a>0 and b>0.
Then the well-known Radon’s inequality can be written as:

APl(a;b) > 0.

Theorem 1. ([7]) Forevery n>2,p>14a, >0,b, >01<k <n, the following
inequality hold:
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n

>a
0< AP (asb) < p| AP (ab) - —APH(arh)

i=1
and

0= Al (aib) < p(M ~m)M " -m* ) 3,

i=1

a .
where msb—'é M, fori=1,...,n.

It is necessary to recall also Theorem 2.9 and Theorem 2.7 from [7].

Theorem 2. ([7]) There is the inequality

(M +mEh -Sa p

2a ] oenrs, )50

0<AlPl(a;b) <

n p-1 20 i1b?
(20) i
i=1
where ms%sM, a,20b >01<i<np=Lnx>2

Theorem 3. ([7]) For n>2, p>1, we have the following inequalities:

L 14 a+a)’f
&ﬂ&mzmﬂm¢{al . ’)}

— + — - -
bipl bjpl (bi+bj)pl
and

[p](4- p p_(M"'m)p ;
0 <Al (a,b)s{M +m 5 }(Eb,j

p-1

a, .
where me—'SM, a,20,b >01<i<n.

We need the following result from [7], which will be used also below, in the next
section.

Theorem 4. If a=(a,,a,,.,a,) and b=(b,b,,...,b,) are n-tuples then we have
the inequality:

p(p-1)m"”* 5 (ab; —a;b)*

< AlPl(a;b) <
Zzn: b I<i<j<n bibj
i=1

< p(p—1M P2 5 (a;b; —a;b;)’
Zzn:bl I<i<j<n bibj
i=1
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where mS%SM,p>1, a, >0,b >0 fori=1..,n.

2. INTEGRAL FORMS OF SEVERAL INEQUALITIES

Using the same techniques as in [1] we find the following integral form of the
inequality (2.5) and (2.6) from Theorem 2.3, see [7].

Theorem 5. For every n>2,p>1 f(x)>0,9(x)>0and if f,g:[a,b] >R, are

two continuous functions on [a,b] with m = inf ) sup ——=- ) then we have:
xefab] g(X)  dab] g(x)
(b |
j’f(x)dx}
p b
j (f(9) 2 g%(m —m)(M P —mPh)[ g(x)dx.

(9097 Ug(x)dxj :

If f,g:[a,b]—> R, aretwo integrable functions on [a,b] then

bf d "
PR [i * Xj )
2 (900)" ( " dx)

J
RGOS @f(X)de [ oo TUO @f(X)dX]

(900" Ug(x)dxj {g(x)dx = (900" (Tg(x)dxjp

IN
=)

Proof: Let ne N and x, =k +B,k e {01,...,n}. Using Theorem 2.3, see [7] we

have n
o< s UOD)" [éf(xoj .
a(9(x))" (ég(xk) -
=P Zn: (f(xk)): - (kilf()(k))pl _éf(Xk) En;(f(xk))p__: (Zn:f(xk)jp:
k=1(g(xk))p (ang(xk)jp kilg(xk) k=1(g(xk))p (Zn:g(xk)jp
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and

o<t (f)) (é”xk)jp
= (0(x))" (ig(xk))“ -

k=1

a )
where m<—L<M, fori=1,...,n.

It results that

Oéa[f_:,An,ij— (G(f’A”’Xk)):
g° (G(g,An,Xk))p

<p a(f_:,An,ka_ (o8, %)) _a(f.An,xk)(G(fp:,A
9° (00980, x))™" (@4, %) g*

and
030[ fppl,An,xk] (o(f.80 %)) p(M MM —m*Y)a(g, A, X, ).
g (09,0, %))
We considered here a( fpp
fp g

g
previous inequality the limits become:

0| L0 @f(x)dxjpg
= lewy @g(x)dxj“

IA
=)

<P -mt-my o))

x))""

y j_(O'(f,An,

(

(o(g.40.%))"

f (x)dx] ;

Froom] |
(o) dx_@ a ARG UCV

i
|

(009)" (TQ(X)dXJ : [a(x)dx (900)" ( g(x)dxj ;
and ) )
X ?f(x)dxj
J((f(()))) ( = M =M ) g
A\ (jg(x)dxj
The next result is the integral form of the inequality (2.19) of Theorem 2.9, from [7].
WWW.josa.ro
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——, A, = (X, X,,..., X, ) division, and the intermediate x, points. When n tends to infinity, in
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Theorem 6. If p>1, fand g are two continuous functions f,g:[a,b]— R, on [a,b],

) f(x)

with m = inf sup —— then we have:
xefab] g(X)  dab] g(x)

0= 1O [r000e] )
R (T @g(x)dxj“

J(M +m)£g(x)dx_£f(x)dx} (M +m)pTg( x)d x+f(( )))p

G f (x)dxj : 2"

Proof: ~We will use the same techniques as in previous proof, choosing

_k+b—a ke{01..,n}, using Theorem 2.9, Riemann sum of the corresponding
n

functions, A, =(X,,X,,...,X,) division, and the intermediate x, points. Then when n tends

to infinity, the limits obtained form the inequality from theorem.
The following integral inequality results from Theorem 3.

Consequence 1. If p>1, and f and g are two continuous functions f,g:[a,b]—> R,

fx )

on [a,b], with g(x) >0, where m = inf , M = sup ——= then we have:
xefab] g(X) xefa,0] §(X)

bf d "
.T(f(X))l u ) XJl_{Mp_i_mp (M +T)
a(9( ))° Ug(x)de" 2°

We will give now the integral form of the inequality (2.13), Theorem 2.5, see [7].

}f g(x)dx.

Theorem 7. Let f,g:[a,b]—> R, be two integrable functions on [a, b] with
g(x)>0, (V)xe[a,b],p>1 and mg(x) < f(x) < Mg(x),(V)x e[a,b]. Then we have the
inequality:

bf d p
(t00) dx_@ e _

p(p-Dm” ZH(f(x)g(y) OLTC) <
(9(x)) ﬁg(x)dx)

J‘g(x)dx aa g(X)g(y)

b
xdy < |

< P-DMPE R (09 = T (I o,
J'g(x)dx aa g(X)g(y)
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Proof: Using the definition of double integral and taking

X, :k+b;na,yj -~ j+b_Ta,k e{041..,n}, je{0L..,m}

we have

(10090~ IR 4oy _ o o2 (FI80) - F)a)F
TR KW= lim 2.2 9(0)9(y,) (2 =)0 Y,):

When n = m tends to infinity

ﬁ(f (x)g(y) - F(y)g(x))’
23 g(x)a(y)
(F)aly,) - (v,
:2 . ] ] 1
n!#mwlgi%;sn Q(X.)g(y,)
(f)g(x,) - F(x)a(x,))
=2 . J ] 1
LLrglggj:sn a(x )g(xj)
(1 0)904) = £05)900)f (b-2)?

2

dxdy =

Xia =X)(Yja—Y;) =

(Xi—l - Xi)(xj—l - Xj) =

=lim X
n—oo I<i< j<n g(X.)g(y,) n

and using Theorem 2.5,

p(p-m** (f(x)a(x;) - f(x,)9(x))? (b-a)? Py
C (b—a) 15 g(x)a(x;) n?
Zg(xi)—n
. (f(x))" b-a (éf(x)j
2 )™ 0 [a .
(;g(xi)nj
. p(p-M ™" (f(x)a(x;) = f(x;,)9(x))* (b—a)?

L (b—a) 15 g(Xi)g(Xj) n?
$900)©

we obtain

f(x)d
D(p-Dm" 55109900~ TDO0O) g (100 @ ¥ Xj _

(9())"™" (T . (X)dxj e

J'g(x)dx aa g(X)g(y)

p(p HM P ”(f(x)g<y> f(y)g(x))’

dxdy,
J'g(x)dx aa g(X)g(y) " y
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that is the inequality from theorem.

If we compute the double integral from previous theorem we deduce the following

inequality:

Consequence 2. Let f,g:[a,b] — R, two integrable functions on [a,b], with g(x) > 0,
(V)xe[a,b],p>1and mg(x) < f(x) <Mg(x),(V)x e[a,b]. Then we have the following

inequality:

(x)dxj

o [
p(p-1mP"? Ifg(%) dx —==

Tg(x)dx

T f (x)dx

a

<p(p-ym 7| [ dx_(

Using from [5], the inequality,

n ka+l -

Tg(x)dx

()

p
k=1 a

- pe(-10)
i)

k=1

which is the reverse inequality of (1), and the same techniques as in Theorem 4 we obtain
below the integral form of previous inequality:

Remark 1.
[a,b], g(x)=0 forany xe[a,b], then

If a,beR,a<b,pe(-10),

A b1 T f(x)dxj "
I(f (X)) dx < (a

2 (9(x)"
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