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1. INTRODUCTION  
 
 

We will recall the inequality of J. Radon which was published in [6].  
For every real numbers   for 0,0,0  kk axp ,1 nk   we have the following 

inequality: 
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In [7], the authors consider two n-tuples  ),...,,(),,...,,( 2121 nn bbbbaaaa   where  

 and  for any real number m. ),...,,( 2211 nnbababaab  ),,...,,( 21
m
n

mmm aaaa 
Then  and  if   and   for every 0a 0b 0ia 0ib .1 ni    

We consider the expression: 
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for real number  and for  n-tuples   and  1p 0a .0b

Then the well-known Radon’s inequality can be written as: 
             

  .0);(  bap
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Theorem 1. ([7]) For every  ,1,0,0,1,2 nkbapn kk   the following 

 inequality hold:  
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where  ,M
b

a
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i

i   for  .,...,1 ni 

It is necessary to recall also Theorem 2.9 and Theorem 2.7 from [7]. 
 

Theorem 2. ([7])  There  is  the inequality 
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where   ,M
b

a
m

i

i   .2,1,1,0,0  npniba ii  

 
Theorem 3. ([7])  For   we have the following inequalities: ,1,2  pn
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i    .1,0,0 niba ii   

We need the following result from [7], which will be used also below, in the next 
section. 
 

Theorem 4.   If   and  ),...,,( 21 naaaa  ),...,,( 21 nbbbb   are n-tuples then we have 

 the inequality: 
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 where  ,1,  pM
b

a
m

i

i   for 0 .,...,1 ni,0  ii ba   

 
 
 
2. INTEGRAL FORMS OF SEVERAL INEQUALITIES 
 
 

Using the same techniques as in [1] we find the following integral form of the 
inequality (2.5) and (2.6) from Theorem 2.3, see  [7]. 
 

Theorem 5.   For every and if   are 

two continuous functions on  with 
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If    are two integrable functions on   then  Rbagf ],[:, ],[ ba

 

.

)(

)(

))((

))((

)(

)(

)(

)(

))((

))((

)(

)(

))((

))((
0

2

1

2

1

11

11
































































































































pb

a

pb

a
b

a
p

p

b

a

b

a
pb

a

pb

a
b

a
p

p

pb

a

pb

a
b

a
p

p

dxxg

dxxf

dx
xg

xf

dxxg

dxxf

dxxg

dxxf

dx
xg

xf
p

dxxg

dxxf

dx
xg

xf

 

 

Proof: Let  and  Nn  .,...,1,0, nk
n

ab
kxk  
  Using Theorem 2.3,  see [7] we 

have  
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and       
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It results that  
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We considered here  
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  division, and the intermediate  points. When n tends to infinity, in 

previous inequality the limits  become:  
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The next result is the integral form of the inequality (2.19) of Theorem 2.9, from [7]. 
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Theorem 6. If  f and g are two continuous functions  on [a,b], 

with 
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Proof:  We will use the same techniques as in previous proof, choosing 

 nk
n

ab
kxk ,...,1,0, 


 , using Theorem 2.9, Riemann sum of the corresponding 

functions,  division,  and  the intermediate  points. Then when n tends 

to  infinity, the limits obtained form the inequality from theorem.  

),...,,( 10 nn xxx kx

The following integral inequality results from Theorem 3. 
 

Consequence 1.  If  and f and g are two continuous functions  

on [a,b], with  where 
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 We will give now the integral form of the inequality (2.13), Theorem 2.5,  see [7].      

 
Theorem 7.  Let    be two integrable functions on [a, b] with  

 and  
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()( fxmg,0)( xg 1],,[)(  pbax ].,[)(),() baxxMgx   Then we have the 

inequality: 
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Proof: Using the definition of double integral and taking  
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and using Theorem 2.5,  
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that is the inequality from theorem. 
If we compute the double integral from previous theorem we deduce the  following 

inequality: 
 
Consequence 2.  Let  two integrable functions on [a,b], with    Rbagf ],[:, ,0)( xg

1],,[)(  pbax  and  ].,[)(),()()( baxxMgxfxmg   Then we have the following  
inequality: 
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Using from [5], the inequality,  
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which is the reverse inequality of (1), and the same techniques as in Theorem 4 we obtain 
below the integral form of previous inequality: 
 
Remark 1.  If  ),0,1(,,,  pbaRba  ),0[],[:, bagf  are integrable functions on 
[a,b],   for any   then  0)( xg ],,[ bax
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