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Abstract.  Frenet frames are a central construction in modern differential geometry, in 

which the structure is described with respect to an object of interest rather than with respect 
to external coordinate systems.  In the present paper we have study the geometry of laminar 
flow of an incompressible viscous unsteady MHD dusty fluid with uniform distribution of dust 
particles between a parallel flat wall and a long wavy wall in Frenet frame field system. The 
flow is due to the presence of a uniform transverse magnetic field, non-torsional oscillations 
of the plate and time dependent pressure gradient. Velocities of both fluid and dust phases are 
obtained using Laplace transform technique. Further the shear stress (skin friction) is 
obtained at the boundaries 

Keywords: Frenet frame field system, laminar flow, dusty fluid, velocity of dust phase 
and fluid phase, motion for a finite time. 

 
 

1. INTRODUCTION  
 
The flow of an electrically conducting dusty fluid through a channel in the presence of 

a transverse magnetic field is encountered in a variety of applications such as magneto 
hydrodynamic (MHD) generators, pumps, accelerators and flow meters, wastewater 
treatment, power plant piping, purification of the crude oils, combustion and petroleum 
transport. P.G Saffman [21] has discussed the stability of the laminar flow of a dusty gas in 
which the dust particles are uniformly distributed. The study of dusty viscous fluid under the 
influence of different physical conditions has been carried out by several authors; Nag and 
Jana [10] have studied unsteady Couette flow of a dusty gas between two infinite parallel 
plates, when one plate of the channel is kept stationary and other plate moves uniformly in its 
own plane. Dalal [6] analyzed the generalized Couette flow of dusty gas due to an impulsive 
pressure gradient as well as due to impulsive start of the lower plate. Singh and Singh [22] 
studied the laminar convective flow of an incompressible, conducting viscous fluid embedded 
with non-conducting dust particles through a vertical parallel plate channel in the presence of 
uniform magnetic field and constant pressure gradient taking volume fraction of the particles 
into consideration when one plate of the channel is fixed and the other is oscillating in time 
and in magnitude about a constant non-zero mean. Attia [1, 2] studied the effects of variable 
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viscosity on the unsteady flow of an electrically conducting, viscous, incompressible dusty 
fluid and heat transfer between parallel non-conducting porous plates when a uniform 
magnetic field is applied perpendicular to the plates. Liu [13] has studied the flow induced by 
an oscillating infinite flat plate in a dusty gas. Michael and Miller [16] investigated the motion 
of dusty gas with uniform distribution of the dust particles placed in the semi–infinite space 
above a rigid plane boundary. Later, Samba Siva Rao [11] has obtained the analytical 
solutions for the dusty fluid flow through a circular tube under the influence of constant 
pressure gradient, using appropriate boundary conditions. Ong and Nicholls [25] have 
extended the problem to cover the case of flow near an infinite wall which executes simple 
harmonic motion parallel to itself. Later, M.C.Baral [05] has discussed the plane parallel flow 
of conducting dusty gas, A.Eric et.al. [07] has studied the quantitative assessment of steady 
and pulsatile flow fields in a parallel plate flow chamber. Thierry Feraille et.al., [14] 
discussed the channel flow induced by wall injection Unsteady Flow Between a Non-torsional 
Oscillating Plate and a Long Wavy Wall of fluid and particles.  Mitra and  Bhattacharyya [15] 
studied  unsteady hydromagnetic laminar flow of a conducting dusty fluid between two 
parallel plates started impulsively from rest. 

During the second part of the 20th century, some researchers like Kanwal [12], 
Truesdell [23], Indrasena [11], Purushotham [19], Bagewadi and Gireesha [2, 3,5] have 
applied differential geometry techniques to investigate the kinematical properties of fluid 
flows in the field of fluid mechanics. Further, recently the authors [6,7,14,15] have studied 
two-dimensional dusty fluid flow in Frenet frame field system. This work is focused on the 
mathematical modeling of the flow of an electrically conducting viscous incompressible fluid 
which suspended non-conducting small spherical dust particles between a non-torsional 
oscillating plate and a long wavy wall. The flow is due to the presence of a uniform transverse 
magnetic field, non-torsional oscillations of the plate and time dependent pressure gradient. 
Initially it is assumed that both the conducting fluid and the non-conducting dust particles are 
to be at rest. Applying Laplace transform technique, the velocity fields for fluid and dust 
particles have been obtained. Also the skin friction at both the walls has been calculated. 
Finally the graphs are plotted for different values of Hartmann number. 

 
 

2. EQUATIONS OF MOTION 
 
The equations of motion of an unsteady viscous incompressible fluid with uniform 

distribution of dust particles in a porous medium are given by [17]: 
 

For Fluid Phase 
 .u 0


 (Continuity)                             (1) 

 

1 2( . ) ( )
u kN 

u u p u v u
t

 



        




    1

(J B


) 
 

 (Linear Momentum)        (2) 

 
For Dust Phase 

0v 


 (Continuity)                 (3) 
 

( . ) ( ) 
v k

v v u v
t m


   




   

 (Linear Momentum)                   (4) 

where:   

www.josa.ro                                                                                                                                                           Physics Section  



Exact solutions of an unsteady …                                                                       P. Venkatesh, B.C.Prasanna Kumara 99

u



 - velocity of the fluid phase,  

v  - velocity of dust phase,  
 - density of the gas, p-pressure of the fluid,  
N - number density of dust particles,  
  - kinematic viscosity,   

6k a   - Stoke’s resistance (drag coefficient),  
m - mass of the dust particle,  
t - time,  
μ - the co-efficient of viscosity of fluid particles. 

Let ,   ,   s n b
  

 be triply orthogonal unit vectors along tangent, principal normal, 
binormal respectively to the spatial curves of congruence’s formed by fluid phase velocity and 
dusty phase velocity lines respectively as shown in the Fig. 1. 

 

 
Fig.  1.  Frenet Frame Field System. 

 
Geometrical relations are given by Frenet Formulae [19] 

i)         ,  ,  s s s s

s n b
k n b k s n

s s s
   

    
  

  
   

 

ii) ,  ,  n n n nb k n 


                              (5) 
n b s

k s s
n n n

       
  

  
  

iii) ,  ,  b b b bk b   
b n s

k s s n
b b b

       
  

  
   

b         iv)     . ,  . ,  .ns bs bs s nbs n k         
 




''

 

where /s, /n and /b are the intrinsic differential operators along fluid phase velocity (or 
dust phase velocity) lines along tangential, principal normal and binormal respectively. The 
functions ( ', ,s n bk K K ) and ( '', , '

s n b   ) are the curvatures and torsion of the above curves and 

ns and bs are normal deformations of these spatial curves along their principal normal and 
binormal respectively. 
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3. FORMULATION OF THE PROBLEM 
 
Let the flow of an unsteady viscous incompressible, dusty fluid between a non-

torsional oscillating plate and a long wavy wall as shown in the figure-2. The number density 
of the dust particles is taken as a constant throughout the flow. It is assumed that the dust 
particles are electrically non conducting and neutral. The motion of the dusty fluid is due to 
magnetic field of uniform strength , non-torsional oscillations of the plate and under the 

influence of time dependent pressure gradient. Under these assumptions the flow will be a 
parallel flow in which the streamlines are along the tangential direction and the velocities are 
varies along binormal direction and with time t, since we extended the fluid to infinity in the 
principal normal direction. 

0B

 

 
Fig.  2. Geometry of the flow pattern. 

 
 For the above described flow the velocities of fluid and dust are of the form 

                           ,  s su u s v v s 
   

             (6) 

i.e., ub = un = 0 and vb = vn = 0, where (us, un, ub) and (vs, vn, vb) denote the velocity 
components of fluid and dust respectively. 
 
 
4. SOLUTION OF THE PROBLEM 

 
By virtue of system of equations (5) the intrinsic decomposition of equations (2) and 

(4) give the following forms;  
2
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where  is called curvature number [18].  2 2 2
r n s bC       k

From equation (11) we see that either 0sv  or . The choice is impossible, 

since if it happens then , which shows that the flow doesn’t exist. Hence 

0sv 

0su   , it 

suggests that the curvature of the streamline along tangent direction is zero.  Thus no radial 
flow exists. 

Equation (7) and (10) are to be solved subject to the initial and boundary conditions. 
Initial condition:   0.; 0, 0s sat t u v    

Boundary conditions:     
1 2

1 2

* *
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i t i t
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for t u a e a e at b

and u b s
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 

where * is the amplitude parameter, *  is the frequency parameter and 1 2 1 2, , ,a a   are 

constants. 
Let us consider the following non-dimensional quantities. 

2
* * * * * *
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Let  t  be the time dependent pressure gradient to be impressed on the system for  

t > 0. So we can write 

( ).
p

t
s


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We define Laplace transforms of Us and Vs as 

dtueU S
xt

S 



0

 and                                      (12) dtveV s
xt

s 



0

Applying the Laplace transform to equations (7) and (10) and to boundary conditions, 
then by using initial conditions one obtains 
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l
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
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   and F(X) is Laplace transform of  t . 

Equation (13) implies 
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Eliminating sV   from (13) and (14) we obtain the following equation 
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where    
2

2 2

2
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5. MOTION FOR A FINITE TIME 

 

In this case we take 0 ( ) ( ) ,
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where P0 and d are constants and H(t) 

is the Heaviside unit step function. We can obtain Us by solving equation (17) and Vs by 
using Us and equations (16). By taking inverse Laplace transform the expression for both 
fluid and dust phase velocities are obta
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6. SHEARING STRESS (SKIN FRICTION) 

 
The Shear stress at the boundaries b = 0 and b cos s   are given by 
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7. CONCLUSIONS 
 
We can observe the parabolic in nature of velocity profiles for the fluid and dust 

particles plotted as in Figs. 3 - 5. It is observed that velocity of fluid particles is parallel to 
velocity of dust particles. Also it is evident from the graphs that, as we increase the strength of 
the magnetic field, it has an appreciable effect on the velocities of fluid and dust particles. 
Also, the velocities for fluid and dust particles decrease and reach zero for large values of t 
which is desirable in physical situation. Fluid and the dust particle velocity are minimum 
along the centre of the channel. The fluid and dust particle velocity is significantly decreased 
by the application of the pressure gradient.  

 

 
Fig.  3. Variation of both fluid and dust velocity with b for 1 2 1 2,  a a w w w   . 

 

 
Fig.  4. Variation of both fluid and dust velocity with b for 1 2 1 2,  a a w w w   .
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Fig.  5. Variation of both fluid and dust velocity with b for 1 0 2 0 1 2,a iu a iu w w w      .
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