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Abstract. The study of any nontrivial convergence of a sequence of real numbers 

conducts to the problem of finding the limit but also to the problem of the speed of this 
convergence. This speed of convergence is characterized by the first iterated limit (that 
supposes the existence of a function of natural variable that tends to zero for n tending to 
infinity, a function that appears as the first term of a sequences of such functions). A 
significant characterization of the first iterated limit may be given by a two sided estimate, 
from which the first iterated limit results immediately. 
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1. INTRODUCTION 
 
 
When we study any nontrivial convergence of a sequence of real numbers , let be 
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, we are interested not only by the obtaining of the limit, but also by  

obtaining of some information about the speed of convergence of the sequence to its limit. 
This speed can be characterized by the first iterated limit, which is considered respecting a 
function of natural variable [i. e. of a sequence ], such that )(1 nun  ))(( 1 nnu
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where l is a real number (finite). (The function belongs to a sequence of functions. )(1 nun 

A characterization of this type also can be obtained from a two sided estimate of the 
form 
                                        ))()((1 nlnu  )),()((1 nlnuaan                                        (2) 

 
with ),()(0 nn    where ,0)( n  for n (which automatically gives that also we 
have ,0)( n for ). n

A two sided estimate of the form (2) is more rich in information than a relation of (1) 
type, because (2) permits us to deduce the equality (1), but the converse affirmation doesn’t 
hold.  

A more concise writing, which shows the existence of a relation of (1) type, but which 
also contains less information than (1) is the one that uses the symbol O,  of  Landau, namely  
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In this paper we will expose some of the two sided estimates of the (2) type, obtained 

in relation with several remarkable concrete sequences of real numbers. 
 
 

2. THE SEQUENCE WHICH DEFINES THE CONSTANT OF NAPIER AND THE 
RELATED TO THIS 

 
 
 Concerning the sequence which defines the number e, also called the constant of 

Napier or the number of Euler and which has the general term , its speed of 

convergence is described by a two sided estimate mentioned in the famous book of  G. Pólya 
and G. Szegö [11], page 38, namely 
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In G. Pólya and G. Szegö [11], this result is included in a series of other results, also 

interesting, but the proof needs several preliminary results, which can be obtained by certain 
Taylor-Maclaurin expansions. In the work [18], published in 1988, but ready since 1985, I 
gave a shorter and simpler proof for the inequality (4), based only on the well known 
inequality of Hermite-Hadamard (also called of Jensen-Hadamard) for the convex functions 
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applied to the function ttt /1)(  on the interval [ ]1, xx , where  which is ,0x
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But we also can consider other standard-sequences related to the number e, obtained 

by modifying in a natural manner the exponent, replacing it by n + p, where p is any real 
(fixed) number, i. e. considering the sequence of general term . In [11] we also 
can find a classical result of I. Schur, namely that if  

pnn  )/11(
,2/1p  then the sequence is strictly 

increasing, and if then the sequence is strictly decreasing beginning from a certain 

rank  which depends on p (in the case p = 1/2, the monotony beginning “accurately” 

since n = 1). 

,2/1p

),(0 pn

Related to the sequence of general term we have established in [16] 

the two sided estimate 
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Other lifelike and in a certain sense “canonical” sequences, but which converge to 1/e 
are the one of general term , respectively  Concerning these sequences, 
I established in my joint papers with C. P. Niculescu [8] and [9], the two sided estimations 
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Also, concerning all the convergences  we recently established that 

the only which has the speed of  is the one corresponding to the value  and this 
is described by the two sided estimation 
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3. THE SEQUENCE WHICH DEFINES THE CONSTANT OF EULER 
 
 
Using the usual notation for the harmonic sum of order n, namely  
 

,/1...3/12/11 nH n   

 
the sequence which defines the constant of Euler (also called the constant of Euler-Masche-
roni) is .ln nH nn    The sequence nn )(  is strictly decreasing and lower bounded, then it 

is convergent to a limit which is, by definition, the constant of Euler   (also denoted some-
time by C). 

The speed of convergence is described by the two sided estimate of [17] of 1983,  
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The inequality was found again and published in Mathematical Gazette in 1991 by R. 

M. Young [26], but the author gave a different proof. 
An adjacent sequence of nn )(  is the sequence of general term )1ln(  nH nn ; the 

term of  adjacent sequence of a given monotonic one is another sequence which has the same 
limit as the first, the opposite sense of monotony and is generated by the same analytic ex-
pression , but for another value of the parameter  In our 

case,  

),( tnf

) H n 
.t

);ln(,( tntnf 
The sequence nn )(  corresponds to the value 0t and the sequence 

nn )( corresponds to the value  Concerning the speed of convergence of the sequence .1t

nn )( , we established a two sided estimate similar to (9) 
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Let’s return now at the sequence which defines the constant of Euler. To improve the 

speed of convergence to the limit, i. e. to the constant of Euler, several new sequences were 
defined. 

So, denoting, with D. W. De Temple, ),2/1ln(  nHR nn we have the following 

two sided estimation ([2]) 
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In [23] we modified the general term of the sequence nn )(  by operating not on the 

argument of the logarithm, but on the last term of the harmonic sum namely which 

was replaced by  So, denoting  
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The speed of convergence is also of the order of , namely 2/1 n
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Modifying deeply the argument of the logarithm, namely defining 
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then, the speed of convergence is of the order of .     /1 3n

But, for every N, we can obtain easy a convergence with the speed of the order of 
 by using the sequence of general term 
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In recent papers, Cristinel Mortici defined several sequences which converge to the 

constant of Euler-Mascheroni and improved the speed of convergence to it.  
We also mention the works of Alina Sântămărian regarding this matter. 
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4. THE SEQUENCE n  

 
 
This sequence is related to the one which appears in the formula of Wallis. Denote by 

 the general term of the formula of Wallis, namely nW
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I introduced this notation (16) in 1991, and I used it in my papers [10], [15], [16] and 

others. The following relation holds 
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Concerning , we mention the inequality from D. S. Mitrinović and P. M. Vasić [4] 

the inequality of  Wallis, namely  
n
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and the inequality of D. K. Kazarinoff 
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In a paper [8] of 1985, the regretted professor Laurenţiu Panaitopol gave a refinement 

of (18), namely 
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Using this inequality I established  in [15] the speed of convergence of the sequence of 

the formula of Wallis, namely 
 

                                          .
)12(428

1
1

)12(4 







 

 n
W

nn n


                                    (21) 

 
In the paper [10] in cooperation with Lászlo Tóth, also of 1991, we established the 

asymptotic expansion of the sequence of Wallis 
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In this paper [10] we also established the asymptotic expansion of the sequence n , 

namely 
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In the paper [16] I established several generalizations of (20) containing more terms 

under the square root and asymptotic expansions which continue the formula (20) with more 
terms.    

 
 

5. THE  SEQUENCE  OF  TRAIAN  LALESCU 
 
 
Consider the sequence of Traian Lalescu, of general term 
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It is convergent to the real number 1/e; there is an extensive literature related to this, 

which doesn’t constitute one of the aims of this paper. I would only mention that the problem 
of finding elementary solutions was raised by Tiberiu Popoviciu in 1971. The first two 
elementary solutions were given by the regretted professor Alexandru Lupaş in 1976 and by 
Marcel Ţena in 1978. 

The speed of convergence of this sequence to its limit is given by the following 
inequality of [3] 
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where   is any real number greater than ¼.  

We also mention an asymptotic expansion of , given in [11]. nL

 
 

6. THE SPEED OF CONVERGENCE OF THE GENERALIZED HARMONIC 
SERIES 

 
 
Let  be a real number, . Denote  s 1s
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The limit of this sequence when n tends to infinity, which also can be written as the 

sum of a series, defines the celebrated function    of Riemann, which is very important in all 
mathematics. The speed of convergence of the sequence to its limit is described by the 
following two sided estimate  
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which can be found in the well known treatise of G. M. Fihtenholtz. In this book, the 
inequality is obtained by considering the remainder of a certain improper integral. In a paper 
of 1997, I obtained another proof for this inequality, based only on the monotonicity of two 
adequate sequences and on the mean theorem of Lagrange.  

The function   of Riemann is extended to the complex variable, ,its    and the 
most interesting problems appear in this domain. The crucial problem is the celebrated 
hypothesis of Riemann, concerning the distribution of the nontrivial zeros of the function on 
the critical line Re(s) =1/2.  

 
 

7. THE COMPENSED HARMONIC SEQUENCES OF EULER TYPE 
 
 
If the real number s is not smaller than 1, then the precedent series is divergent. An 

important discovery of Euler was the fact that by subtraction from the partial sum  )(sn , 

(where ) of the term inspired exactly by the primitive function of  , 
we obtain a convergent sequence. A remarkable fact is the one that this convergence remains 
valid for the “adherent” case of ; of course, in this case, the primitive function changes its 
nature becoming the logarithm and giving the celebrated constant of Euler, also named of 
Euler-Masheroni. Denote that the case

)1,0(s sx/1xfx )(

1s

2/1s , surely known by Euler, was revisited by 
Andrei G. Ioachimescu in the first issue of Gazeta Matematică, of 1895. Denoting 
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and I established in 1991 the two sided estimate ,lim nn aa 
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The corresponding two sided estimate for the adjacent sequence, of general term 
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was established in [18].  

 
 

8.  CONCLUDING REMARKS 
 
 
All the previous examples show several speeds of convergence of the sequences to 

their limits, involving a collection of these speeds. The two sided estimates conduct to the 
finding of the first iterated limit accordingly with the asymptotic expansions (respecting a 
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certain sequence of functions of natural variable) where such expansions exist. In some cases 
these limits suggested the “first steps” in the asymptotic expansions. 
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