A NEW INEQUALITY AND IDENTITY

DAM VAN NHI ${ }^{1}$

Manuscript received: 20.12.2012; Accepted paper: 12.02.2013;
Published online: 01.03.2013.

Abstract. In this paper we introduce the new inequality and identity called (M, N), that Hayashi's inequality is only a special case. Then we will present some interesting applications.

Keywords: Hayashi's inequality, triangle, polygon.
2000 Mathematical Subject Classification: 26D99, 97D50.

1. INTRODUCTION

Suppose given a triangle $\triangle A B C$ of the lengths of sides a, b, c. Hayashi propose an inequality: With any point M, we have

$$
a M B \cdot M C+b M C . M A+c M A . M B \geq a b c
$$

(see $[2,3])$. In this paper we propose a new inequality which is a generalization of the Hayashi's inequality, then we present some interesting applications in triangle. Successfully, we have two following principal results.

Theorem 1.1. Let $A_{1} A_{2} \ldots A_{n}$ be a polygon, s be an integer, $s<n$, and arbitrary points $N_{1}, N_{2}, \ldots, N_{s}, M$ in euclidean plane \square^{2} we have the following inequality

$$
\frac{\prod_{j=1}^{s} M N_{j}}{\prod_{i=1}^{n} M A_{i}} \leq \sum_{k=1}^{n} \frac{\prod_{j=1}^{s} A_{k} N_{j}}{\prod_{i \neq k} A_{k} A_{i} \cdot M A_{k}}
$$

We call this inequality as name the inequality (M, N).
(i) If $s=0$, we have Hayashi's inequality.
(ii) If $n=3, s=1$, and A, B, C, N belong to the circle with the center M we have the inequality $a A N+b B N+c C N \geq 4 S_{A B C}$.

[^0]Proposition 1.2. Assume that the polygon $A_{1} A_{2} \ldots A_{n}$ is inscribed in the circle with the center O and radius R. Taking $s+1$ points $N_{1}, N_{2}, \ldots, N_{s}$ and M also belonging to this circle C. Assuming that the coordinate $A_{k}\left(\cos \alpha_{k} ; \sin \alpha_{k}\right), \quad k=1,2, \ldots, n ;$ the coordinate $N_{j}\left(\cos u_{j} ; \sin u_{j}\right), j=1,2, \ldots, s$ and the coordinate $M(\cos u ; \sin u)$. Then, we will have these identities
(i) $\frac{\prod_{j=1}^{s} \sin \frac{u-u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{u-\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} \cos \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2}$
(ii) $\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} \sin \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2}=0$
(iii) $\sum_{k=1}^{3} \frac{\sin \frac{\alpha_{k}-u_{1}}{2}}{\prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}}=0$ if $n=3, s=1$
(iv) $\frac{\prod_{j=1}^{n-1} \sin \frac{u-u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{u-\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{n-1} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}}$ if $s=n-1$
(v) $\frac{\prod_{j=1}^{n-2} \sin \frac{u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{t \neq 1}^{n-2} \sin \frac{\alpha_{k}-u_{j}}{2}}{2} \operatorname{l}_{t}-\cot \frac{\alpha_{t}}{2}$ and $\sum_{k=1}^{n} \frac{\prod_{j=1}^{n-2} \sin \frac{\alpha_{k}-u_{j}}{2}}{\prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}}=0$ if $s=n-2$

2. INEQUALITY AND IDENTITY

Now we prove an inequality that Hayashi's inequality is a special case.
Theorem 2.1. Let $A_{1} A_{2} \ldots A_{n}$ be a polygon, s be an integer, $s<n$, and arbitrary points $N_{1}, N_{2}, \ldots, N_{s}, M$ in Euclidean plane \square^{2} we have the following inequality

$$
\frac{\prod_{j=1}^{s} M N_{j}}{\prod_{i=1}^{n} M A_{i}} \leq \sum_{k=1}^{n} \frac{\prod_{j=1}^{s} A_{k} N_{j}}{\prod_{i \neq k} A_{k} A_{i} \cdot M A_{k}}
$$

We call this inequality as name the inequality (M, N).
(i) If $s=0$, we have Hayashi's inequality.
(ii) If $n=3, s=2$, and A, B, C, N belong to the circle with the center M we have the inequality $a A N+b B N+c C N \geq 4 S_{A B C}$.

Proof: Suppose that A_{k} have affixe a_{k}, M has affixe z and N_{h} affixe z_{h}. Using the Lagrange interpolation formula, we have $\prod_{j=1}^{s}\left(z-z_{j}\right)=\sum_{k=1}^{n} \frac{\prod_{j=1}^{s}\left(a_{k}-z_{j}\right)}{\prod_{i \neq k}\left(a_{k}-a_{i}\right)} \prod_{i \neq k}\left(z-a_{i}\right)$ and

$$
\frac{\prod_{j=1}^{s} M N_{j}}{\prod_{i=1}^{n} M A_{i}} \leq \sum_{k=1}^{n} \frac{\prod_{j=1}^{s} A_{k} N_{j}}{\prod_{i \neq k} A_{k} A_{i} \cdot M A_{k}}
$$

(i)

If $s=0$ we have $\prod M N_{j}=1=\prod A_{k} N_{j}$ and the inequality (M, N) becomes the Hayashi's inequality for the polygon

$$
\frac{1}{\prod_{i=1}^{n} M A_{i}} \leq \sum_{k=1}^{n} \frac{\prod_{j=1}^{s} A_{k} N_{j}}{\prod_{i \neq k} A_{k} A_{i} \cdot M A_{k}}
$$

(ii) If $n=3, s=1$ and A, B, C, N belong to the circle with the center M we have the inequality $\frac{a b c}{R} \leq a A n+b B N+c C N$ or $a A N+b B N+c C N \geq 4 S_{A B C}$.

Remark 2.2. Denote N as the center of circumcircle. Applying the inequality (M, N) (ii) we deduce $R(a+b+c) \geq 2 r(a+b+c)$ or $R \geq 2 r$ [Euler].

Corollary 2.3. Suppose that O, I and G are respectively the center of circumcirle and incircle of $\triangle A B C$. Denote the radii of circumcircles of the triangles $G B C, G C A, G A B$ by R_{1}, R_{2}, R_{3}, respectivly. Let $\mathrm{r}_{\mathrm{a}}, \mathrm{r}_{\mathrm{b}}, \mathrm{r}_{\mathrm{c}}$ be the radii of circumcircle of the triangles IBC, ICA, IAB,
and let $R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}$ be the radii of circumcircles of the triangles $O B C, O C A, O A B$, respectively. We have

$$
\begin{equation*}
R^{2} \geq \frac{a b c}{a+b+c} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
R_{1}+R_{2}+R_{3} \geq 3 R \text { (see [1]). } \tag{ii}
\end{equation*}
$$

(iii) $\frac{r_{a}}{h_{a}}+\frac{r_{b}}{h_{b}}+\frac{r_{c}}{h_{c}} \geq \frac{R}{r}$ where h_{a}, h_{b}, h_{c} are the lengths of altitudes of $\triangle A B C$. $\frac{R_{1}^{\prime} X}{h_{a}}+\frac{R_{2}^{\prime} y}{h_{b}}+\frac{R_{3}^{\prime} z}{h_{c}} \geq R$ where $\triangle A B C$ is not an obtuse triangle and x, y, z are the distances from O to the 3 sides, respectively.

Proof:
(i) Applying the inequality (M, N) (ii) we obtain $a O B \cdot O C+b O C \cdot O A+c O A \cdot O B \geq a b c$ or $R^{2} \geq \frac{a b c}{a+b+c}$.
(ii) Applying the inequality (M, N) we obtain $a G B \cdot G C+b G C \cdot G A+c G A \cdot G B \geq a b c$. Since $a G B . G C=4 R_{1} S_{G B C}=4 R_{1} \frac{S_{A B C}}{3}=4 R_{1} \frac{a b c}{3.4 R}=R_{1} \frac{a b c}{3 R}, \quad b G C \cdot G A=R_{2} \frac{a b c}{3 R} \quad$ and $c G A . G B=R_{3} \frac{a b c}{3 R}$ therefore $R_{1} \frac{a b c}{3 R}+R_{2} \frac{a b c}{3 R}+R_{3} \frac{a b c}{3 R} \geq a b c$ or $R_{1}+R_{2}+R_{3} \geq 3 R$.
(iii) Applying the inequality (M, N) we have $a I B . I C+b I C . I A+c I A . I B \geq a b c$. Since $a I B . I C=4 r_{a} S_{I B C}=2 r_{a} r a=4 \frac{r_{a}}{h_{a}} \frac{r a b c}{4 R}=\frac{r_{a}}{h_{a}} \frac{r a b c}{R}, b I C \cdot I A=\frac{r_{b}}{h_{b}} \frac{r a b c}{R}$ and $c I A \cdot I B=\frac{r_{c}}{h_{c}} \frac{r a b c}{R}$ we have $\frac{r_{a}}{h_{a}} \frac{r a b c}{R}+\frac{r_{b}}{h_{b}} \frac{r a b c}{R}+\frac{r_{c}}{h_{c}} \frac{r a b c}{R} \geq a b c$ or $\frac{r_{a}}{h_{a}}+\frac{r_{b}}{h_{b}}+\frac{r_{c}}{h_{c}} \geq \frac{R}{r}$.
(iv) Applying the inequality (M, N) we have $a O B \cdot O C+b O C \cdot O A+c O A \cdot O B \geq a b c$. Since $a O B . O C=4 R_{1}^{\prime} S_{\text {OBC }}=2 R_{1}^{\prime} X a=4 R_{1}^{\prime} \frac{x}{h_{a}} \frac{a b c}{4 R}=R_{1}^{\prime} \frac{x}{h_{a}} \frac{a b c}{R}, \quad b O C . O A=R_{2}^{\prime} \frac{y}{h_{b}} \frac{a b c}{R} \quad$ and $c O A . O B=R_{3}^{\prime} \frac{Z}{h_{c}} \frac{a b c}{R} \quad$ we have $\quad \frac{R_{1}^{\prime} X}{h_{a}} \frac{a b c}{R}+\frac{R_{2}^{\prime} y}{h_{b}} \frac{a b c}{R}+\frac{R_{3}^{\prime} Z}{h_{c}} \frac{a b c}{R} \geq a b c \quad$ or $\frac{R_{1}^{\prime} X}{h_{a}}+\frac{R_{2}^{\prime} y}{h_{b}}+\frac{R_{3}^{\prime} Z}{h_{c}} \geq R$.

Proposition 2.4. Suppose given a triangle $A B C$ with the lengths of sides a, b, c respectively and R is the radius of circumcircle of $\triangle A B C$. Let's I, J_{a}, J_{b}, J_{c} are the centers of incircle and escribed circles of $\triangle A B C$, respectively. Then, with any point M, we have

$$
\begin{equation*}
\frac{a b c M I}{M A \cdot M B \cdot M C} \leq \frac{a A I}{M A}+\frac{b B I}{M B}+\frac{c C I}{M C} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\frac{M I \sqrt{a+b+c}}{M A \cdot M B \cdot M C} \leq \frac{\sqrt{b+c-a}}{\sqrt{b c} M A}+\frac{\sqrt{c+a-b}}{\sqrt{c a} M B}+\frac{\sqrt{a+b-c}}{\sqrt{a b} M C} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\frac{M J_{a}+M J_{b}+M J_{c}}{M A \cdot M B \cdot M C} \leq \frac{A J_{a}+A J_{b}+A J_{c}}{b c M A}+\frac{B J_{a}+B J_{b}+B J_{c}}{c a M B}+\frac{C J_{a}+C J_{b}+C J_{c}}{a b M C} \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\frac{M J_{a} \cdot M J_{b}+M J_{b} \cdot M J_{c}+M J_{c} \cdot M J_{a}}{M A \cdot M B \cdot M C} \leq \frac{A J_{a} \cdot A J_{b}+A J_{b} \cdot A J_{c}+A J_{c} \cdot A J_{a}}{b c M A} \tag{iv}
\end{equation*}
$$

$$
+\frac{B J_{a} \cdot B J_{b}+B J_{b} \cdot B J_{c}+B J_{c} \cdot B J_{a}}{c a M B}+\frac{C J_{a} \cdot C J_{b}+C J_{b} \cdot C J_{c}+C J_{c} \cdot C J_{a}}{a b M C}
$$

Proof: (i) Applying the inequality (M, N) we have

$$
\frac{M I}{M A \cdot M B \cdot M C} \leq \frac{A I}{b c M A}+\frac{B I}{c a M B}+\frac{C I}{a b M C}
$$

(ii) Since $I A^{2}=\frac{b c(b+c-a)}{a+b+c}, I B^{2}=\frac{c a(c+a-b)}{a+b+c}, I C^{2}=\frac{a b(a+b-c)}{a+b+c}$ therefore

$$
\frac{M I \sqrt{a+b+c}}{M A \cdot M B \cdot M C} \leq \frac{\sqrt{b+c-a}}{\sqrt{b c} M A}+\frac{\sqrt{c+a-b}}{\sqrt{c a} M B}+\frac{\sqrt{a+b-c}}{\sqrt{a b} M C}
$$

(iii) Applying the inequality (M, N) to $n=3, s=1$, we have the three inequalities

$$
\begin{aligned}
& \frac{M J_{a}}{M A \cdot M B \cdot M C} \leq \frac{A J_{a}}{b c M A}+\frac{B J_{a}}{c a M B}+\frac{C J_{a}}{a b M C} \\
& \frac{M J_{b}}{M A \cdot M B \cdot M C} \leq \frac{A J_{b}}{b c M A}+\frac{B J_{b}}{c a M B}+\frac{C J_{b}}{a b M C}
\end{aligned}
$$

$$
\frac{M J_{c}}{M A \cdot M B \cdot M C} \leq \frac{A J_{c}}{b c M A}+\frac{B J_{c}}{c a M B}+\frac{C J_{c}}{a b M C}
$$

On adding the three inequalities, we find the inequality

$$
\frac{M J_{a}+M J_{b}+M J_{c}}{M A \cdot M B \cdot M C} \leq \frac{A J_{a}+A J_{b}+A J_{c}}{b c M A}+\frac{B J_{a}+B J_{b}+B J_{c}}{c a M B}+\frac{C J_{a}+C J_{b}+C J_{c}}{a b M C}
$$

(iv) Applying the inequality (M, N) to $n=3, s=1$, we have the three inequalities

$$
\frac{M J_{a} \cdot M J_{b}}{M A \cdot M B \cdot M C} \leq \frac{A J_{a} \cdot A J_{b}}{b c M A}+\frac{B J_{a} \cdot B J_{b}}{c a M B}+\frac{C J_{a} \cdot C J_{b}}{a b M C}
$$

$$
\begin{aligned}
& \frac{M J_{b} \cdot M J_{c}}{M A \cdot M B \cdot M C} \leq \frac{A J_{b} \cdot A J_{c}}{b c M A}+\frac{B J_{b} \cdot B J_{c}}{c a M B}+\frac{C J_{b} \cdot C J_{c}}{a b M C} \\
& \frac{M J_{c} \cdot M J_{a}}{M A \cdot M B \cdot M C} \leq \frac{A J_{c} \cdot A J_{a}}{b c M A}+\frac{B J_{c} \cdot B J_{a}}{c a M B}+\frac{C J_{c} \cdot C J_{a}}{a b M C} .
\end{aligned}
$$

On adding the three inequalities, we find the inequality

$$
\begin{aligned}
& \frac{M J_{a} \cdot M J_{b}+M J_{b} \cdot M J_{c}+M J_{c} \cdot M J_{a}}{M A \cdot M B \cdot M C} \leq \frac{A J_{a} \cdot A J_{b}+A J_{b} \cdot A J_{c}+A J_{c} \cdot A J_{a}}{b c M A}+\frac{B J_{a} \cdot B J_{b}+B J_{b} \cdot B J_{c}+B J_{c} \cdot B J_{a}}{c a M B}+ \\
& \frac{C J_{a} \cdot C J_{b}+C J_{b} \cdot C J_{c}+C J_{c} \cdot C J_{a}}{a b M C} .
\end{aligned}
$$

Corollary 2.5: Given a the triangle $A B C$ of the lengths of sides a, b, c and R is the radius of circumcircle of $\triangle A B C$. Denote O, H the center of circumcircle and the orthocenter of $\triangle A B C$. Then, with any point M, we have the inequality:

$$
\frac{a b c M O \cdot M H}{R M A \cdot M B \cdot M C} \leq \frac{a A H}{M A}+\frac{b B H}{M B}+\frac{c C H}{M C}
$$

if M belongs to the circle with the center O and the radius R, we obtain the inequality

$$
\frac{a b c M H}{M A \cdot M B \cdot M C} \leq \frac{a \sqrt{4 R^{2}-a^{2}}}{M A}+\frac{b \sqrt{4 R^{2}-b^{2}}}{M B}+\frac{c \sqrt{4 R^{2}-c^{2}}}{M C} .
$$

Proof: Applying the inequality (M, N) to $n=3, s=2$, we have the inequality:

$$
\frac{M O \cdot M H}{M A \cdot M B \cdot M C} \leq \frac{A O \cdot A H}{b c M A}+\frac{B O \cdot B H}{c a M B}+\frac{C O \cdot C H}{a b M C} .
$$

Thus, we obtain the inequality $\frac{a b c M O \cdot M H}{R M A \cdot M B \cdot M C} \leq \frac{a A H}{M A}+\frac{b B H}{M B}+\frac{c C H}{M C}$. Since $A H=\sqrt{4 R^{2}-a^{2}}, \quad B H=\sqrt{4 R^{2}-b^{2}} \quad$ and $\quad C H=\sqrt{4 R^{2}-c^{2}} \quad$ we obtain $\quad \frac{a b c M H}{M A \cdot M B \cdot M C} \leq$ $\leq \frac{a \sqrt{4 R^{2}-a^{2}}}{M A}+\frac{b \sqrt{4 R^{2}-b^{2}}}{M B}+\frac{c \sqrt{4 R^{2}-c^{2}}}{M C}$

Corollary 2.6: Suppose given a triangle $A B C$ with the lengths of sides a, b, c, respectively. Let I, G, H be the center of incircle, the centroid and the orthocenter of $\triangle A B C$. Then, with any point M, we have the inequality
(i) $\frac{a b c M I^{2}}{M A \cdot M B \cdot M C} \leq \frac{a A I^{2}}{M A}+\frac{b B I^{2}}{M B}+\frac{c C I^{2}}{M C}$

$$
\begin{equation*}
\frac{a b c M G^{2}}{M A \cdot M B \cdot M C} \leq \frac{a A G^{2}}{M A}+\frac{b B G^{2}}{M B}+\frac{c C G^{2}}{M C} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a b c M H^{2}}{M A \cdot M B \cdot M C} \leq \frac{a\left(4 R^{2}-a^{2}\right)}{M A}+\frac{b\left(4 R^{2}-b^{2}\right)}{M B}+\frac{c\left(4 R^{2}-c^{2}\right)}{M C} \tag{iii}
\end{equation*}
$$

Proof: Applying the inequality (M, N) to $n=3, s=2, N_{1} \equiv N_{2} \equiv N$, we have

$$
\frac{M N^{2}}{M A \cdot M B \cdot M C} \leq \frac{A N^{2}}{b c M A}+\frac{B N^{2}}{c a M B}+\frac{C N^{2}}{a b M C}
$$

Therefore, we obtain the inequality $\frac{a b c M I^{2}}{M A \cdot M B \cdot M C} \leq \frac{a A I^{2}}{M A}+\frac{b B I^{2}}{M B}+\frac{c C I^{2}}{M C}$ and $\frac{a b c M G^{2}}{M A \cdot M B \cdot M C} \leq \frac{a A G^{2}}{M A}+\frac{b B G^{2}}{M B}+\frac{c C G^{2}}{M C}$.

Then we have (i) and (ii). If $N \equiv H$ we have (iii): $\frac{a b c M H^{2}}{M A \cdot M B \cdot M C} \leq \frac{a\left(4 R^{2}-a^{2}\right)}{M A}+$ $+\frac{b\left(4 R^{2}-b^{2}\right)}{M B}+\frac{c\left(4 R^{2}-c^{2}\right)}{M C}$.

Example. Suppose given a triangle $A B C$ of the lengths of sides a, b, c respectively. R is the radius of circumcircle; r_{1}, r_{2}, r_{3} are the radii of escribed circles correspondence to vertices A, B, C, respectively. Let d_{a}, d_{b}, d_{c} the distances from the center of circumcircle to the center of escribed circles. Then, with any point D belong to the circumcircle of $\triangle A B C$ we have the inequality:
(i) $\frac{\frac{d_{a} d_{b} d_{c}}{\sqrt{a+b+c}}}{R^{3}} \leq \frac{\sqrt{b c}}{x \sqrt{b+c-a}}+\frac{\sqrt{c a}}{y \sqrt{c+a-b}}+\frac{\sqrt{a b}}{z \sqrt{a+b-c}}+\frac{D J_{a} \cdot D J_{b} \cdot D J_{c}}{x y z \sqrt{a+b+c}}$
(ii) $\sqrt{\frac{\left(R+2 r_{1}\right)\left(R+2 r_{2}\right)\left(R+2 r_{3}\right)}{R^{3}(a+b+c)}} \leq \frac{\sqrt{b c}}{\sqrt{b+c-a}}+\frac{\sqrt{c a}}{\sqrt{c+a-b}}+\frac{\sqrt{a b}}{\sqrt{a+b-c}}+\frac{D J_{a} \cdot D J_{b} \cdot D J_{c}}{x y z \sqrt{a+b+c}}$.

Proof: (i) We consider $M \equiv O$.
Since $\left\{\begin{array}{l}J_{a} A^{2}=\frac{b c(a+b+c)}{b+c-a}, J_{a} B^{2}=\frac{c a(a+b-c)}{b+c-a}, J_{a} C^{2}=\frac{a b(a-b+c)}{b+c-a} \\ J_{b} A^{2}=\frac{b c(b+a-c)}{c+a-b}, J_{b} B^{2}=\frac{c a(a+b+c)}{c+a-b}, J_{b} C^{2}=\frac{a b(b+c-a)}{c+a-b} \\ J_{c} A^{2}=\frac{b c(c+a-b)}{a+b-c}, J_{c} B^{2}=\frac{c a(c+b-a)}{a+b-c}, J_{c} C^{2}=\frac{a b(a+b+c)}{a+b-c}\end{array}\right.$ therefore we obtain $\frac{\frac{d_{a} d_{b} d_{c}}{\sqrt{a+b+c}}}{R^{3}} \leq \frac{\sqrt{b c}}{x \sqrt{b+c-a}}+\frac{\sqrt{c a}}{y \sqrt{c+a-b}}+\frac{\sqrt{a b}}{z \sqrt{a+b-c}}+\frac{D J_{a} \cdot D J_{b} \cdot D J_{c}}{x y z \sqrt{a+b+c}}$.
(ii) Since $d_{a}^{2}=R^{2}+2 R r_{1}, d_{b}^{2}=R^{2}+2 R r_{2}, d_{c}^{2}=R^{2}+2 R r_{3}$ therefore

$$
\sqrt{\frac{\left(R+2 r_{1}\right)\left(R+2 r_{2}\right)\left(R+2 r_{3}\right)}{R^{3}(a+b+c)}} \leq \frac{\sqrt{b c}}{\sqrt{b+c-a}}+\frac{\sqrt{c a}}{\sqrt{c+a-b}}+\frac{\sqrt{a b}}{\sqrt{a+b-c}}+\frac{D J_{a} \cdot D J_{b} \cdot D J_{c}}{x y z \sqrt{a+b+c}} .
$$

Proposition 2.7. Let $A_{1} A_{2} \ldots A_{n}$ be a polygon inscribed in the circle with the center O and radius R. Then, with any $s<n$ points $N_{1} \ldots N_{s}$ in the plane $A_{1} A_{2} \ldots A_{n}$, we have the inequality

$$
\sum_{k=1}^{n} \frac{\prod_{i=1}^{s} A_{k} N_{i}}{\prod_{i=1, i \neq k}^{n} A_{k} A_{i}} \geq \frac{\prod_{i=1}^{s} O N_{i}}{R^{n-1}} .
$$

If $R=1$ we obtain $\sum_{k=1}^{n} \frac{\prod_{i=1}^{s} A_{k} N_{i}}{\prod_{i=1, i \neq k}^{n} A_{k} A_{i}} \geq \prod_{i=1}^{s} O N_{i}$.
If $n=3, s=1$ and $a_{1}=A_{2} A_{3}, a_{2}=A_{3} A_{1}, a_{3}=A_{1} A_{2}$ we obtain the inequality

$$
a_{1} A_{1} N+a_{2} A_{2} N+a_{3} A_{3} N \geq 4 S_{A_{1} A_{2} A_{3}} \frac{O N}{R} .
$$

Proof: Applying the inequality (M, N) with $M \equiv O$, we have the inequality

$$
\sum_{k=1}^{n} \frac{\prod_{i=1}^{s} A_{k} N_{i}}{\prod_{i=1, i \neq k}^{n} A_{k} A_{i}} \geq \frac{\prod_{i=1}^{s} O N_{i}}{R^{n-1}}
$$

Let $R=1$ we obtain $\sum_{k=1}^{n} \frac{\prod_{i=1}^{s} A_{k} N_{i}}{\prod_{i=1, i \neq k}^{n} A_{k} A_{i}} \geq \prod_{i=1}^{s} O N_{i}$.
Now, we illustrate the advantage of the identity (M, N) by addressing several important problems of elementary Geometry. Firstly, we use the functions sin and cosin to create the identity under the form of trigonometry.

Without generality, we can assume that the radius R of the circle C equal to 1 . Suppose that every point A_{k} has affixe $a_{k}=\cos \alpha_{k}+i \sin \alpha_{k}$, and M has affixe $z=\cos u+i \sin u$ and every N_{h} has affixe $z_{h}=\cos u_{h}+i \sin u_{h}$. From Lagrange interpolation formula, we have

$$
\frac{\prod_{j=1}^{s}\left(z-Z_{j}\right)}{\prod_{t=1}^{n}\left(z-a_{j}\right)}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{s}\left(a_{k}-Z_{j}\right)}{\left(z-a_{k}\right) \prod_{t \neq k}\left(a_{k}-a_{t}\right)}
$$

or

$$
\frac{\prod_{j=1}^{s} 2 i \sin \frac{u-u_{j}}{2} e^{\frac{i\left(u+u_{j}\right)}{2}}}{\prod_{t=1}^{n} 2 i \sin \frac{u-\alpha_{t}}{2} e^{\frac{i\left(u+\alpha_{t}\right)}{2}}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} 2 i \sin \frac{\alpha_{k}-u_{j}}{2} e^{\frac{i\left(\alpha_{k}+u_{j}\right)}{2}}}{2 i \sin \frac{u-\alpha_{k}}{2} e^{\frac{i\left(u+\alpha_{k}\right)}{2}} \prod_{t \neq k} 2 i \sin \frac{\alpha_{k}-\alpha_{t}}{2} e^{\frac{i\left(\alpha_{k}+\alpha_{t}\right)}{2}}}
$$

We reduce all the factors $2 i, e^{\frac{i u_{j}}{2}}$ and $e^{\frac{i \alpha_{t}}{2}}$, obtain the relation

$$
\frac{\prod_{j=1}^{s} \sin \frac{u-u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{u-\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} e^{\frac{i(s+1-n)\left(\alpha_{k}-u\right)}{2}}
$$

From this relation, we deduce two identities below:

$$
\frac{\prod_{j=1}^{s} \sin \frac{u-u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{u-\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} \cos \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2}
$$

and

$$
\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} \sin \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2}=0
$$

From this result, we build the identities under the form of trigonometry and geometry for the inequality (M, N) as following:

Proposition 2.8. Assume that the polygon $A_{1} A_{2} \ldots A_{n}$ is inscribed in the circle with the center O and radius R. Taking $s+1$ points $N_{1} \ldots N_{s}$ and M also belonging to this circle C. Assuming that the coordinate $A_{k}\left(\cos \alpha_{k} ; \sin \alpha_{k}\right), \quad k=1,2, \ldots, n$; the coordinate $N_{j}\left(\cos u_{j} ; \sin u_{j}\right), j=1,2, \ldots, s$ and the coordinate $M(\cos u ; \sin u)$. Then, we will have these identities
(i)

$$
\frac{\prod_{j=1}^{s} \sin \frac{u-u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{u-\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} \cos \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2}
$$

(ii) $\sum_{k=1}^{n} \frac{\prod_{j=1}^{s} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} \sin \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2}=0$
(iii) $\sum_{k=1}^{3} \frac{\sin \frac{\alpha_{k}-u_{1}}{2}}{\prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}}=0$ if $n=3, s=1$
(iv) $\frac{\prod_{j=1}^{n-1} \sin \frac{u-u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{u-\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{n-1} \sin \frac{\alpha_{k}-u_{j}}{2}}{\sin \frac{u-\alpha_{k}}{2} \prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}}$ if $s=n-1$
(v) $\frac{\prod_{j=1}^{n-2} \sin \frac{u_{j}}{2}}{\prod_{t=1}^{n} \sin \frac{\alpha_{t}}{2}}=\sum_{k=1}^{n} \frac{\prod_{j=1}^{n-2} \sin \frac{\alpha_{k}-u_{j}}{2}}{\prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}} \cot \frac{\alpha_{k}}{2}$ and $\sum_{k=1}^{n} \frac{\prod_{j=1}^{n-2} \sin \frac{\alpha_{k}-u_{j}}{2}}{\prod_{t \neq k} \sin \frac{\alpha_{k}-\alpha_{t}}{2}}=0$ if $s=n-2$ and

$$
u=0 .
$$

Remark 2.9. If the quadrilateral $A B C D$ is inscribed in the circle we have

$$
\frac{D A}{b c}+\frac{D C}{a b}+\frac{D B}{c a}
$$

by (iii) or $\frac{a D A^{2}}{D A}+\frac{c D C^{2}}{D C}=\frac{b D B^{2}}{D B}$. Moreover, we have

$$
D A^{2} \cdot D B \cdot D C \cdot a+D C^{2} \cdot D A \cdot D B \cdot c=D B^{2} \cdot D C \cdot D A \cdot b
$$

Hence $D A^{2} S_{D B C}+D C^{2} S_{D A B}=D B^{2} D_{D C A}$ [Feuerbach].
Proposition 2.10. Suppose the polygon $A_{1} A_{2} \ldots A_{n}$ is inscribed in the circle with the radius $R=1$. Taking $s+1$ points $N_{1} \ldots N_{s}$ and M also belonging to this circle C. Assuming that the coordinate $A_{k}\left(\cos \alpha_{k} ; \sin \alpha_{k}\right), k=1,2, \ldots, n$; the coordinate $N_{j}\left(\cos u_{j} ; \sin u_{j}\right)$, $j=1,2, \ldots, s$ and the coordinate $M(\cos u ; \sin u)$. Then, with the proper choices of + or - we will have the identities
(i) $\frac{\prod_{j=1}^{s} M N_{j}}{\prod_{t=1}^{n} M A_{t}}=\sum_{k=1}^{n} \frac{ \pm \prod_{j=1}^{s} A_{k} N_{j}}{M A_{k} \prod_{t \neq k} A_{k} A_{t}} \cos \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2},(M, N)$
(ii) $\sum_{k=1}^{n} \frac{ \pm \prod_{j=1}^{s} A_{k} N_{j}}{M A_{k} \prod_{t \neq k} A_{k} A_{t}} \sin \frac{(s+1-n)\left(\alpha_{k}-u\right)}{2}=0$
(iii) $\frac{\prod_{j=1}^{n-2} M N_{j}}{\prod_{t=1}^{n} M A_{t}}=\sum_{k=1}^{n} \frac{ \pm \prod_{j=1}^{n-2} A_{k} N_{j}}{\prod_{t \neq k} A_{k} A_{t}} \cot \frac{\alpha_{k}}{2}$ and $\sum_{k=1}^{n} \frac{ \pm \prod_{j=1}^{n-2} A_{k} N_{j}}{\prod_{t \neq k} A_{k} A_{t}}=0$.

Corollary 2.11. Assume that the points $A_{1} A_{2} \ldots A_{n}, M$ in order belong to the circle C with the center O. Then, we have the identities
(i) $\sum_{r=1}^{n}(-1)^{r} \frac{\cos (n-1) \angle M A_{r+1} A_{r}}{M A_{r} \prod_{k \neq r} A_{r} A_{k}}=\frac{1}{\prod_{k=1}^{n} M A_{k}}$
(ii) $\sum_{r=1}^{n}(-1)^{r} \frac{\sin (n-1) \angle M A_{r+1} A_{r}}{M A_{r} \prod_{k \neq r} A_{r} A_{k}}=0$

Proof: These identities follow from the identity (M, N) with $s=0$.
Corollary 2.12. Let the quadrilateral $A B C D$ be inscribed in the circle C with the center O. Let $a=B C, b=C A, c=A B$. Then, we have two identities:
(i) $\frac{a \cos (O D, O A)}{D A}-\frac{b \cos (O D, O B)}{D B}+\frac{c \cos (O D, O C)}{D C}=-\frac{a b c}{D A \cdot D B \cdot D C}$
(ii) $\frac{a \sin (O D, O A)}{D A}+\frac{c \sin (O D, O C)}{D C}=\frac{b \sin (O D, O B)}{D B}$

Proof: These identities follow from the identity (M, N) if $n=3, s=0$.

3. CONJECTURE

Despite of not having been proven yet, these following results are still hoped to be true:

Open Problem 3.1. Suppose given a triangle $A B C$ with the lengths of sides a, b, c respectively and R is the radius of circumcircle of $\triangle A B C$. Let's J_{a}, J_{b}, J_{c} are the centers of escribed circles of $\triangle A B C$, respectively. Then, with any point M, we have
(i) $\frac{M J_{a} \cdot M J_{b} \cdot M J_{c}}{M A \cdot M B \cdot M C} \leq \frac{A J_{a} \cdot A J_{b} \cdot A J_{c}}{b c M A}+\frac{B J_{a} \cdot B J_{b} \cdot B J_{c}}{c a M B}+\frac{C J_{a} \cdot C J_{b} \cdot C J_{c}}{a b M C}$
(ii) $\frac{\frac{M J_{a} \cdot M J_{b} \cdot M J_{c}}{\sqrt{a+b+c}}}{M A \cdot M B \cdot M C} \leq \frac{\frac{\sqrt{b c}}{\sqrt{b+c-a}}}{M A}+\frac{\frac{\sqrt{c a}}{\sqrt{c+a-b}}}{M B}+\frac{\frac{\sqrt{a b}}{\sqrt{a+b-c}}}{M C}$

Open Problem 3.2. Giving a triangle $A B C$ with the lengths of sides a, b, c and R is the radius of circumscribed circle; r_{1}, r_{2}, r_{3} are the radii of escribed circles. Let's d_{a}, d_{b}, d_{c} the distances from the center of circumscribed circle to the center of escribed circles. Then we always have the inequality:
(i) $\frac{\frac{d_{a} d_{b} d_{c}}{\sqrt{a+b+c}}}{R^{3}} \leq \frac{\sqrt{b c}}{x \sqrt{b+c-a}}+\frac{\sqrt{c a}}{y \sqrt{c+a-b}}+\frac{\sqrt{a b}}{z \sqrt{a+b-c}}$
(ii) $\sqrt{\frac{\left(R+2 r_{1}\right)\left(R+2 r_{2}\right)\left(R+2 r_{3}\right)}{R^{3}(a+b+c)}} \leq \frac{\sqrt{b c}}{\sqrt{b+c-a}}+\frac{\sqrt{c a}}{\sqrt{c+a-b}}+\frac{\sqrt{a b}}{\sqrt{a+b-c}}$

REFERENCES

[1] Andreescu, T., Andrica, D., Educatia Mathematica, 1(2), 19, 2005.
[2] Hayashi, T., Thoku Math. J., 4, 68, 1913/14.
[3] Mitrinovic, D.S., Pecaric, J.E., Volenec, V., Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Dordrecht, Boston, London 1989.

[^0]: ${ }^{1}$ School for gifted students, Hanoi National University of Education, Hanoi, Vietnam. Email: damvannhi@yahoo.com.

