ORIGINAL PAPER

INVOLUTE CURVES OF BIHARMONIC CURVES IN $\widetilde{SL}_{*}(\mathbb{R})$

TALAT KORPINAR¹, VEDAT ASIL¹, ESSIN TURHAN¹

Manuscript received:20.10.2011; Accepted paper:10.11.2011; Published online: 01.12.2011.

Abstract. In this paper, we study involute curves of biharmonic curves in the \widetilde{SL} , (\mathbb{R}) . Finally, we find out their explicit parametric equations.

Keywords: Biharmonic curve, $\widetilde{SL_2(\mathbb{R})}$, curvature, torsion.

1. INTRODUCTION

A smooth map $\phi: N \to M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$E_2(\phi) = \int_N \frac{1}{2} |T(\phi)|^2 dv_{h,}$$

where $T(\phi) := tr \nabla^{\phi} d\phi$ is the tension field of ϕ .

The Euler-Lagrange equation of the bienergy is given by $T_2(\phi) = 0$.

Here the section $T_2(\phi)$ is defined by:

$$T_{\gamma}(\phi) = -\Delta_{\phi}T(\phi) + \operatorname{tr}R(T(\phi), d\phi)d\phi, \tag{1.1}$$

and called the bitension field of ϕ . Non-harmonic biharmonic maps are called proper biharmonic maps. In this paper, we study involute curves of biharmonic curves in the $\widetilde{SL_2(\mathbb{R})}$. Finally, we find out their explicit parametric equations.

2. $\widetilde{SL_2(\mathbb{R})}$

We identify $\widetilde{SL_2(\mathbb{R})}$ with

$$\mathbb{R}^{3}_{+} = \{(x, y, z) \in \mathbb{R}^{3} : z > 0\},$$

endowed with the metric

$$g = ds^2 = \left(dx + \frac{dy}{z}\right)^2 + \frac{dy^2 + dz^2}{z^2}.$$

The following set of left-invariant vector fields forms an orthonormal basis for $\widetilde{SL_2(\mathbb{R})}$

ISSN: 1844 – 9581 Mathematics Section

¹ Firat University, Department of Mathematics 23119, Elazig, Turkey. E-mail: talatkorpinar@gmail.com

$$e_1 = \frac{\partial}{\partial x}, e_2 = z \frac{\partial}{\partial y} - \frac{\partial}{\partial x}, e_3 = z \frac{\partial}{\partial z}.$$
 (2.1)

The characterising properties of gdeined by:

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1,$$

 $g(e_1, e_2) = g(e_2, e_3) = g(e_1, e_3) = 0.$

The Riemannian connection ∇ of the metric g is given by:

$$2g(\nabla_{x}Y,Z) = Xg(Y,Z) + Yg(Z,X) - Zg(X,Y) - g(X,[Y,Z]) - g(Y,[X,Z]) + g(Z,[X,Y]),$$

which is known as Koszul's formula.

Using the Koszul's formula, we obtain:

$$\nabla_{e_{1}}e_{1} = 0, \quad \nabla_{e_{1}}e_{2} = \frac{1}{2}e_{3}, \quad \nabla_{e_{1}}e_{3} = -\frac{1}{2}e_{2},$$

$$\nabla_{e_{2}}e_{1} = \frac{1}{2}e^{3}, \quad \nabla_{e_{2}}e_{2} = e_{3}, \quad \nabla_{e_{2}}e_{3} = -\frac{1}{2}e_{1} - e_{2},$$

$$\nabla_{e_{3}}e_{1} = -\frac{1}{2}e_{2}, \quad \nabla_{e_{3}}e_{2} = \frac{1}{2}e_{1}, \quad \nabla_{e_{3}}e_{3} = -0.$$
(2.2)

Moreover we put

$$R_{ijk} = (e_i, e_j)e_k, R_{ijkl} = (e_i, e_j, e_k, e_l),$$

where the indices i, j, k and l take the values 1, 2 and 3

$$R_{1212} = R_{1313} = \frac{1}{4}, \quad R_{2323} = -\frac{7}{4}.$$
 (2.3)

3. BIHARMONIC CURVES IN $\widetilde{SL_2(\mathbb{R})}$

Biharmonic equation for the curve γ reduces to

$$\nabla_T^3 T - R(T, \nabla_T T)T = 0, \tag{3.1}$$

that is, γ is called a biharmonic curve if it is a solution of the equation (3.1).

Let us consider biharmonicity of curves in $\widetilde{SL_2(\mathbb{R})}$.Let $\{T, N, B\}$ be the Frenet frame field along γ . Then, the Frenet frame satisfes the following Frenet-Serret equations:

www.josa.ro Mathematics Section

$$\nabla_{T}T = \kappa N,$$

$$\nabla_{T}N = -\kappa T + \tau B,$$

$$\nabla_{T}B = -\tau N,$$
(3.2)

where $\kappa = |T(\gamma)| = |\nabla_T T|$ is the curvature of γ and τ its torsion and

$$g(T,T)=1$$
, $g(N,N)=1$, $g(B,B)=1$,
 $g(T,N)=g(T,B)=g(N,B)=0$.

With respect to the orthonormal basis $\{e_1, e_2, e_3\}$, we can write:

$$T = T_1 e_1 + T_2 e_2 + T_3 e_3,$$

$$N = N_1 e_1 + N_2 e_2 + N_3 e_3,$$

$$B = T \times N = B_1 e_1 + B_2 e_2 + B_3 e_3.$$
(3.3)

Theorem 3.1. $\gamma: I \to \widetilde{SL_2(\mathbb{R})}$ is a biharmonic curve if and only if:

$$\kappa = \text{constant} \neq 0,$$

$$\kappa^2 + \tau^2 = -\frac{1}{4} + \frac{15}{4} B_1^2,$$

$$\tau' = 2N_1 B_1.$$
(3.4)

Proof: Using (4.1) and Frenet formulas (4.2), we have (4.4).

Theorem 3.2. ([9]) Let $\gamma: I \to \mathbb{R}$ be a unit speed non-geodesic curve. Then, the parametric equations of γ are:

$$x(s) = \frac{1}{\aleph} \sin \varphi \sin \left[\aleph s + C \right] + \frac{1}{\aleph} \sin \varphi \cos \left[\aleph s + C \right] + \wp_2$$

$$y(s) = \frac{1}{\aleph 2 + \cos^2 \varphi} \sin \varphi \wp_1 e^{\cos \varphi s} \left(-\aleph \cos \left[\aleph s + C \right] + \cos \varphi \sin \left[\aleph s + C \right] \right)$$

$$z(s) = \wp_1 e^{\cos \varphi s}$$

where \wp_1 , \wp_2 are constants of integration.

4. INVOLUTE CURVES OF BIHARMONIC CURVES IN $\widetilde{SL_2(\mathbb{R})}$

Definition 4.1. Let unit speed curve $\gamma: I \to SL_2(\mathbb{R})$ and the curve $\Theta: I \to SL_2(\mathbb{R})$ be given. For $\forall s \in I$ then the curve Θ is called the involute of the curve γ , if the tangent at the point $\gamma(s)$ to the curve γ passes through the tangent at the point $\Theta(s)$ to the curve Θ and

ISSN: 1844 – 9581 Mathematics Section

$$g\left(T^*(s),T(s)\right) = 0\tag{4.1}$$

Let the Frenet-Serret frames of the curves γ and Θ be $\{T, N, B\}$ and $\{T^*, N^*, B^*\}$, respectively.

Theorem 4.2. Let $\gamma: I \to \widetilde{SL_2(\mathbb{R})}$ be a unit speed biharmonic curve and Θ its involute curve on $\widetilde{SL_2(\mathbb{R})}$. Then, the parametric equations of Θ are

$$x(s) = \frac{1}{\aleph} \sin \varphi \sin \left[\aleph s + C \right] + \frac{1}{\aleph} \sin \varphi \cos \left[\aleph s + C \right] +$$

$$+ (\Lambda - s) \left(\sin \varphi \cos \left[\aleph s + C \right] - \sin \varphi \sin \left[\aleph s + C \right] + \wp_2 \right)$$

$$y(s) = \frac{1}{\aleph 2 + \cos^2 \varphi} \sin \varphi \wp_1 e^{\cos \varphi s} \left(-\aleph \cos \left[\aleph s + C \right] + \cos \varphi \sin \left[\aleph s + C \right] \right) +$$

$$+ (\Lambda - s) \wp_1 e^{\cos \varphi s} \sin \varphi \sin \left[\aleph s + C \right]$$

$$z(s) = \wp_1 e^{\cos \varphi s} + (\Lambda - s) \wp_1 e^{\cos \varphi s} \cos \varphi$$

$$(4.2)$$

where Λ , C are constants of integration.

Proof: We assume that $\gamma: I \to \widetilde{SL_2(\mathbb{R})}$ be a unit speed biharmonic curve and Θ its involute curve on $\widetilde{SL_2(\mathbb{R})}$. We find that the parametric equations of Θ .

The involute curve of biharmonic curve may be given as

$$\Theta(s) = \gamma(s) + \eta(s)T(s) \tag{4.3}$$

From (4.3), then we have

$$\Theta'(s) = (1 + \eta'(s))T(s) + \eta(s)\kappa(s)N(s)$$
(4.4)

Since the curve Θ is involute of the curve γ , $g(T^*(s),T(s))=0$. Then, we get

$$1 + \eta'(s) = 0 \text{ or } \eta(s) = \Lambda - s$$
 (4.5)

where Λ is constant of integration.

Substituting (4.5) into (4.3), we get

$$\Theta(s) = \gamma(s) + (\Lambda - s)T(s) \tag{4.6}$$

On the other hand, the tangent vector can be written in the following form:

$$T = T_1 e_1 + T_2 e_2 + T_2 e_2 \tag{4.7}$$

Using (2.1) in (3.5), we obtain

www.josa.ro Mathematics Section

$$T = \left(\sin\varphi\cos\left[\aleph s + C\right] - \sin\varphi\sin\left[\aleph s + C\right],\right.$$

$$\left(\varphi_{1}e^{\cos\varphi s}\sin\varphi\sin\left[\aleph s + C\right],\left(\varphi_{1}e^{\cos\varphi s}\cos\varphi\right)$$
(4.8)

If we substitute (4.10) into (4.6), we have (4.2). This concludes the proof of Theorem.

5. APPLICATIONS

We can use Mathematica in theorem 3.2-4.2, yields

We show that γ and Θ in terms of Mathematica as follows:

ISSN: 1844 – 9581 Mathematics Section

REFERENCES

- [1] Blair, D. E., Contact Manifolds in Riemannian Geometry, *Lecture Notes in Mathematics*, Springer-Verlag, **509**, Berlin-New York, 1976.
- [2] Caddeo, R., Montaldo, S., Internat. J. Math., 12(8), 867, 2001.
- [3] Chen, B. Y., Soochow J. Math., 17, 169, 1991.
- [4] Dimitric, I., Bull. Inst. Math. Acad. Sinica, 20, 53, 1992.
- [5] Eells, J., Lemaire, L., Bull. London Math. Soc., 10, 1, 1978.
- [6] Eells, J., Sampson, J. H., Amer. J. Math., **86**, 109, 1964.
- [7] Jiang, G. Y., Chinese Ann. Math. Ser. A, **7**(2), 130, 1986.
- [8] Jiang, G. Y., Chinese Ann. Math. Ser. A, **7**(4), 389, 1986.
- [9] Inoguchi, J., Internat. J. Math. Math. Sci., 21, 1365, 2003.

www.josa.ro Mathematics Section