ORIGINAL PAPER

ON A PROPERTY OF THE SPLINE FUNCTIONS

ADRIAN BRANGA¹, EUGEN CONSTANTINESCU²

Manuscript received: 16.07.2011; Accepted paper: 11.09.2011; Published online: 01.12.2011

Abstract. The definition of the spline functions as solutions of a variational problem is presented in the preliminaries of this paper and are shown some theorems regarding to the existence and uniqueness. The main result of this article consists of a property verified by the spline functions in connection with the spaces of functions used.

Keywords: spline functions, variational problems, best approximation. **2000 Mathematics Subject Classification:** 41A15, 41A50, 41A52.

1. INTRODUCTION

Definition 1. Let E_1 be a real linear space, $(E_2, \|\cdot\|_2)$ a normed real linear space, $T: E_1 \to E_2$ an operator and $U \subseteq E_1$ a non-empty set. The problem of finding the elements $s \in U$ which satisfy

$$\|\mathbf{T}(\mathbf{s})\|_{2} = \inf_{\mathbf{u} \in \mathbf{U}} \|\mathbf{T}(\mathbf{u})\|_{2},\tag{1}$$

is called the general spline interpolation problem, corresponding to the set U.

A solution of this problem, provided that exists, is named general spline interpolation element, corresponding to the set U.

The set U is called interpolatory set.

In the sequel we assume that E_1 is a real linear space, $(E_2, (.,.)_2, \|.\|_2)$ is a real Hilbert space, $T: E_1 \to E_2$ is a linear operator and $U \subseteq E_1$ is a non-empty convex set.

Lemma 1. $T(U) \subseteq E_2$ is a non-empty convex set.

The proof follows directly from the linearity of the operator T, taking into account that U is a non-empty set.

Theorem 1. (Existence Theorem) If $T(U) \subseteq E_2$ is a closed set, then the general spline interpolation problem (1) (corresponding to U) has at least a solution.

The proof is shown in the papers [1, 4].

¹ "Lucian Blaga" University of Sibiu, Department of Matematics, 550012, Sibiu, Romania. E-mail: <u>adrian_branga@yahoo.com</u>

² "Lucian Blaga" University of Sibiu, Department of Matematics, 550012, Sibiu, Romania. E-mail: <u>egnconst68@yahoo.com</u>

For every element $s \in U$ we define the set

$$U(s) \coloneqq U - s. \tag{2}$$

Lemma 2. For every element $s \in U$ the set U(s) is non-empty $(0_{E_1} \in U(s))$.

The result follows directly from the relation (2).

Theorem 2. (Uniqueness Theorem) If $T(U) \subseteq E_2$ is closed set and exists an element $s \in U$ solution of the general spline interpolation problem (1) (corresponding to U), such that U(s) is linear subspace of E_1 , then the following statements are true

i) For any elements s_1 , $s_2 \in U$ solutions of the general spline interpolation problem (1) (corresponding to U) we have

$$s_1 - s_2 \in Ker(T) \cap U(s); \tag{3}$$

ii) The element $s \in U$ is the unique solution of the general spline interpolation problem (1) (corresponding to U) if and only if

$$\operatorname{Ker}(\mathbf{T}) \cap \mathsf{U}(\mathbf{s}) = \{\mathbf{0}_{\mathsf{E}_1}\}.$$
(4)

A proof is presented in the papers [2, 5].

2. MAIN RESULTS

Lemma 3. An element $s \in U$, such that U(s) is linear subspace of E_1 , is solution of the general spline interpolation problem (1) (corresponding to U) if and only if

$$(T(s), T(\tilde{u}))_2 = 0, \ (\forall) \ \tilde{u} \in U(s).$$
(5)

A proof is shown in the papers [2, 3].

For every element $s \in U$ we consider the set $S(s) \coloneqq \{ v \in E_1 | (T(v), T(\tilde{u}))_2 = 0, (\forall) \ \tilde{u} \in U(s) \}.$ (6)

Proposition 1. For every element $s \in U$ the set S(s) has the following properties

- i) S(s) is non-empty set $(0_{E_1} \in S(s))$;
- ii) S(s) is linear subspace of E_1 ;
- iii) $\text{Ker}(T) \subseteq S(s)$.

For a proof see the paper [2].

Lemma 4. An element $s \in U$, such that U(s) is linear subspace of E_1 , is solution of the general spline interpolation problem (1) (corresponding to U) if and only if

$$s \in S(s). \tag{7}$$

The result is a consequence of Lemma 3.

Lemma 5. For every element $s \in U$ the set T(S(s)) has the following properties

- i) T(S(s)) is non-empty set $(0_{E_2} \in T(S(s)))$;
- ii) T(S(s)) is linear subspace of E_2 ;
- iii) $T(S(s)) \subseteq (T(U(s)))^{\perp}$.

A proof is shown in the paper [1].

Theorem 3. If an element $s \in U$, such that U(s) is linear subspace of E_1 is solution of the general spline interpolation problem (1) (corresponding to U), then the following inequality is true

$$\|T(s) - T(v)\|_{2} \le \|T(u) - T(v)\|_{2}, \ (\forall) \ u \in U, \ (\forall) \ v \in S(s),$$
(8)

with equality if and only if T(u) = T(s), i.e. $u - s \in Ker(T)$.

Proof. Let $u \in U, v \in S(s)$ be arbitrary elements.

Using the properties of the inner product
$$(.,.)_2$$
 we deduce
 $||T(u) - T(v)||_2^2 = ||(T(u) - T(s)) + (T(s) - T(v))||_2^2 =$
 $= ||T(u) - T(s)||_2^2 + 2(T(u) - T(s), T(s) - T(v))_2 + ||T(s) - T(v)||_2^2.$ (9)

As
$$u \in U$$
 and $s \in U$ it obtains $u - s \in U(s)$, therefore
 $T(u - s) \in T(U(s)).$
(10)

Because $s \in U$, from Proposition 1 ii) it follows that S(s) is linear subspace of E_1 . On the other hand, as $s \in U$, such that U(s) is linear subspace of E_1 , is solution of the general spline interpolation problem (1) (corresponding to U), using Lemma 4 we deduce $s \in S(s)$. Also, we have $v \in S(s)$. Consequently, it follows that $s - v \in S(s)$, hence

$$T(s-v) \in T(S(s)). \tag{11}$$

Taking into account that $s \in U$ and using Lemma 5 iii), the formula (11) implies that

$$T(s-v) \in \left(T(U(s))\right)^{\perp}.$$
(12)

From relations (10), (12) and using the property of the orthogonality we deduce

$$(T(u-s), T(s-v))_2 = 0.$$
 (13)

As T is a linear operator, the relation (13) can be written as

$$(T(u) - T(s), T(s) - T(v))_2 = 0.$$
 (14)

Substituting the formula (14) in the equality (9) it follows that

$$||T(u) - T(v)||_2^2 = ||T(u) - T(s)||_2^2 + ||T(s) - T(v)||_2^2.$$
(15)

The relation (15) implies

$$||T(s) - T(v)||_2 \le ||T(u) - T(v)||_2,$$
(16)

with equality if and only if $||T(u) - T(s)||_2 = 0$, equivalent T(u) = T(s), i.e. $u - s \in Ker(T)$.

Theorem 4. If an element $s \in U$, such that U(s) is linear subspace of E_1 is solution of the general spline interpolation problem (1) (corresponding to U), then

$$\|T(s) - T(v)\|_{2} = \inf_{u \in U} \|T(u) - T(v)\|_{2}, \ (\forall)v \in S(s),$$
(17)

i.e. T(s) is the unique element in T(U) of the best approximation for T(v), $(\forall)v \in S(s)$.

This result follows directly from Theorem 3.

REFERENCES

- [1] Branga, A., *Contribuții la Teoria Funcțiilor Spline, Teză de Doctorat*, Universitatea Babeș- Bolyai, Cluj-Napoca, 2002.
- [2] Branga, A., *Aproximare și Optimizare prin Funcții Spline*, Casa Cărții de Știință, Cluj-Napoca, 2009.
- [3] Branga, A., Acu, M., *Filomat*, **24**(4), 121, 2010.
- [4] Micula, Gh. Funcții Spline și Aplicații, Editura Tehnică, București, 1978.
- [5] Micula, Gh., Micula, S., *Handbook of Splines*, Kluwer Acad. Publ., Dordrecht-Boston-London, 1999.