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Abstract: Different testing function spaces are defined for Banach space valued 

Potential –Hankel transform by using Gelfand-Shilov technique of S  spaces, some 

properties of the spaces are also proved. At the end generalized Banach space valued 
Potential – Hankel transform is defined. 
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1. INTRODUCTION  
 
 

In realizability theory for electric systems , many systems consist of signals having 
instantaneous values in Banach space. Zemanian had focused on Banach space valued 
Laplace transform in [4]. Following [4], Tekale studied Banach space valued Stieltijes 
transform in [2]. We have discussed Potential transform of Banach space valued in [3]. 

In this paper, we have introduced Banach space valued Potential – Hankel transform. 
For which we have defined various spaces of Gelfand – Shilov type. 

Gelfand – Shilov in [1] had given spaces of type S  in which conditions are imposed 

not only on the decrease of the function but also on the growth of their derivatives as the order 
of derivative increases. 

In this paper the spaces  ( ),PH A  PH A ,  etc are defined and their 

properties are discussed. Also generalized Potential – Hankel transformation is introduced. 
Notation and terminology as per Zemanian A.H.[4] and [5]. 
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2. GELFAND-SHILOV TYPE SPACE 
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The space : For given  , ( )mPH A 0.m 
The space it set as, 
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The space : For given  , ( )nPH A n>0,
The space is defined as, 
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    (2.1.2) 

 
The space  ,

, ( ) :n
mPH A



This space is formed by combining the conditions of (2.1.1) and (2.1.2) . 
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2.2. THEOREM:  
 

( )PH A is a Frechet space. 

Proof: As the family D  of seminorms , , ,{ }c d kq k q   generating T  is countable, it 

suffices to prove the completeness of the space PH . 

Let us consider a Cauchy sequence { }n in  Hence, for a given there 

exist an such that for  

( ).PH A 0,
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In particular for  for  , 0,k q  , .a b N
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Consequently for fixed (t,s) in I1 where I1 is open set    R R   [first quandrant] 

  ,a t s is a numerical Cauchy sequence. Let  ,t s  be the pointwise limit of   , .a t s   

Using equation (2.2.2) it can be easily deduced that  a converges to   uniformly on 

I1.  

Thus   is continuous, moreover repeated use of equation (2.2.1) for different value of 
k,q and the use of the proposition from topological linear spaces and duality yields that  is 

smooth i.e. .E   

Further from ecuation (2.2.1) we get, 
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Hence  PH A  and it is the T limit of n by equation (2.2.1) again. This proves 

the completeness of  and our proof is complete. PH A  ,
The non triviality of these spaces is proved in the following theorem. 

 
2.3. THEOREM  

 
The space D(I1) is a subspace of  PH A such that the injection mapping from D(I1) 

to PH is continuous i.e. T D  1 1/ ( ) (I T )I

Proof: For 1( , ) ( ),t s D I  set  

 sup : ( , )supp L s t s   
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symbol that is the greatest integer not exceeding X. 
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Now from the inductive limit, the subset Km (say) of  I1 such that for each 
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Analogously, we can prove similar results for other spaces defined. 
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  PH A2.4. PROPERTIES OF THE SPACES AND  PH A
 : 

 
Proposition: If 1 2  & 1 2   then    1 2
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where is some positive constant. 

Choose an integer depending on the value of and
1A

1A 0  such that 
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.
 

, 1 , ( )l l
k q qC A C mk    

Then from equation (2.5.1), we immediately get ( )PH A  implying that 

Remark: Analogous to above theorem we can show that the spaces 

 
 
. GEN RALISED POTENTIAL HANKEL TRANSFORMS ON SPACES. 
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for ( , ) fy x   

( , )F y x is an A-valued analytic function on f . 
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