VARIOUS SPACES FOR BANACH SPACE VALUED POTENTIAL HANKEL TRANSFORM

NANDA D. SAHU ${ }^{1}$, ALKA S.GUDADHE ${ }^{2}$,
Manuscript received: 28.08.2011; Accepted paper: 16.09.2011;
Published online: 01.12.2011

Abstract

Different testing function spaces are defined for Banach space valued Potential -Hankel transform by using Gelfand-Shilov technique of S_{α} spaces, some properties of the spaces are also proved. At the end generalized Banach space valued Potential - Hankel transform is defined.

Keywords: Banach Space, Potential Transform, Hankel Transform.

1. INTRODUCTION

In realizability theory for electric systems, many systems consist of signals having instantaneous values in Banach space. Zemanian had focused on Banach space valued Laplace transform in [4]. Following [4], Tekale studied Banach space valued Stieltijes transform in [2]. We have discussed Potential transform of Banach space valued in [3].

In this paper, we have introduced Banach space valued Potential - Hankel transform. For which we have defined various spaces of Gelfand - Shilov type.

Gelfand - Shilov in [1] had given spaces of type S_{α} in which conditions are imposed not only on the decrease of the function but also on the growth of their derivatives as the order of derivative increases.

In this paper the spaces $P H_{\alpha}(A), \mathrm{PH}^{\beta}(\mathrm{A}), \mathrm{PH}_{\alpha}^{\beta}(\mathrm{A})$ etc are defined and their properties are discussed. Also generalized Potential - Hankel transformation is introduced. Notation and terminology as per Zemanian A.H.[4] and [5].

2. GELFAND-SHILOV TYPE SPACE

2.1 VARIOUS SPACES:

The space $\mathrm{PH}_{\alpha}(\mathrm{A})$: For $\alpha \geq 0$,

$$
\begin{aligned}
& P_{c, d} H_{\alpha}(A)=P H_{\alpha}(A)= \\
& \left.=\left\{\phi: \phi \in E_{+}, \gamma_{c, d, k, l, q} \phi(t, s)\right\}=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{1}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \leq C_{k, q} A_{1}^{l}, l^{l \alpha}\right\}
\end{aligned}
$$

for all $k, q \in I N_{0}$, where the constants $A_{1} \& C_{k q}$ depend on the function ϕ.

[^0]The space $\mathrm{PH}^{\beta}(\mathrm{A})$: For $\beta \geq 0$,

$$
P H^{\beta}(A)=\left\{\phi: \phi \in E_{+}, \gamma_{r, l, q} \phi(t, s)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \leq C_{k, l} A_{2}^{q} q^{q \beta}\right\}
$$

The space $P H_{\alpha}^{\beta}(A)$: For $\alpha \geq 0$ and $\beta \geq 0$,
$P H_{\alpha}^{\beta}(A)=\left\{\phi: \phi \in E_{+}, \gamma_{c, d, k, l, q} \phi(t, s)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \leq C_{k} A_{1}^{l} A_{2}^{q} I^{l \alpha} q^{q \beta}\right\}$
The space $P_{\gamma} H(A)$: For $\gamma \geq 0$,

$$
P_{\gamma} H(A)=\left\{\phi: \phi \in E_{+} ; \gamma_{c, d, k, l, q} \phi(t, s)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \leq C_{l, q} A_{4}^{k} k^{k \gamma}\right\}
$$

The space $P H_{\alpha, m}(A)$: For given $m>0$.
The space it set as,

$$
\begin{equation*}
P H_{\alpha, m}=\left\{\phi: \phi \in E_{+} ; \gamma_{k, l, q} \phi(t, s)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A}\right. \tag{2.1.1}
\end{equation*}
$$

$$
\text { for any } \left.\delta>0 . \leq \mathrm{C}_{k, q, \delta}(m+\delta)^{l} l^{l \alpha}\right\},
$$

The space $P H^{\beta, n}(A)$: For given $n>0$,
The space is defined as,

$$
\begin{align*}
P H^{\beta, n}= & \left\{\phi: \phi \in E_{+} ; \gamma_{k, l, q} \phi(t, s)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A}\right. \tag{2.1.2}\\
& \text { for any } \left.\eta>0 . \leq \mathrm{C}_{k, l, n}(n+\eta)^{q} q^{q \beta}\right\},
\end{align*}
$$

The space $P H_{\alpha, m}^{\beta, n}(A)$:
This space is formed by combining the conditions of (2.1.1) and (2.1.2).

$$
\begin{aligned}
P H_{\alpha, m}^{\beta, n}=\left\{\phi: \phi \in E_{+} ; \gamma_{k, l, q} \phi(t, s)\right. & =\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \\
& \left.\leq \mathrm{C}_{k}(m+\delta)^{l}(n+\eta)^{q}, l^{l \alpha} q^{q \beta}\right\}
\end{aligned}
$$

for given $m, n>0$ and for any $\delta, n>0$.
The space $P_{\gamma, \Delta} H(A)$:
For given $\Delta>0$, the space is defined as,

$$
\begin{aligned}
P_{\gamma, \Delta} H(A)=\left\{\phi: \phi \in E_{+} ; \gamma_{k, l, q} \phi(t, s)\right. & =\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \\
& \left.\leq \mathrm{C}_{l, q, \zeta}(\Delta+\zeta)^{k} k^{k \gamma}\right\},
\end{aligned}
$$

2.2. THEOREM:

$P H_{\alpha}(A)$ is a Frechet space.
Proof: As the family D_{α} of seminorms $\left\{\gamma_{c, d, k q}\right\}_{k, q}^{\infty}$ generating T_{α} is countable, it suffices to prove the completeness of the space PH_{α}.

Let us consider a Cauchy sequence $\left\{\psi_{n}\right\}$ in $P H_{\alpha}(A)$. Hence, for a given $\in>0$, there exist an $N=N_{k q}$ such that for $a, b \geq N$,

$$
\gamma_{c, d, k, l, q}\left(\phi_{a}-\phi_{b}\right)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi\left(\phi_{a}-\phi_{b}\right)\right]\right\|_{A}<\in .
$$

In particular for $k, q=0$, for $a, b \geq N$.

$$
\sup \left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi_{a}(t, s)\right]\right\|_{A}<\in .
$$

Consequently for fixed (t, s) in I_{1} where I_{1} is open set $\left(R_{+}\right) \times\left(R_{+}\right)$[first quandrant] $\left\{\phi_{a}(t, s)\right\}$ is a numerical Cauchy sequence. Let $\phi(t, s)$ be the pointwise limit of $\left\{\phi_{a}(t, s)\right\}$.

Using equation (2.2.2) it can be easily deduced that $\left\{\phi_{a}\right\}$ converges to ϕ uniformly on I_{1}.

Thus ϕ is continuous, moreover repeated use of equation (2.2.1) for different value of k, q and the use of the proposition from topological linear spaces and duality yields that ϕ is smooth i.e. $\phi \in E_{+}$.

Further from ecuation (2.2.1) we get,

$$
\gamma_{c, d, k, l, q\left(\phi_{a}\right)} \leq \gamma_{c, d, k, l, q\left(\phi_{0}\right)}+\in \leq C_{k, q} A_{1}^{l} l^{l \alpha}+\in
$$

for all $a \geq N$.
Letting $a \rightarrow \infty$ and observing that \in is arbitrary we get

$$
\gamma_{c, d, k, l, q}=\sup \left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi\left(\phi_{a}-\phi_{b}\right)\right]\right\|_{A} \leq C_{k, q} A_{1}^{l} l^{l \alpha} .
$$

Hence $\psi \in P H_{\alpha}(A)$ and it is the T_{α} limit of ψ_{n} by equation (2.2.1) again. This proves the completeness of $P H_{\alpha}(A)$, and our proof is complete.

The non triviality of these spaces is proved in the following theorem.

2.3. THEOREM

The space $\mathrm{D}\left(I_{1}\right)$ is a subspace of $P H_{\alpha}(A)$ such that the injection mapping from $\mathrm{D}\left(I_{1}\right)$ to $P H_{\alpha}$ is continuous i.e. $T / D\left(I_{1}\right) \subset T\left(I_{1}\right)$

Proof: For $\phi(t, s) \in D\left(I_{1}\right)$, set

$$
L=\sup \{s:(t, s) \operatorname{supp} \phi\}
$$

and

$$
C_{k, q}=\sup \left\|\lambda_{c, d}(t) s^{1}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} .
$$

Then

$$
C_{k, q}=\sup \left\|\lambda_{c, d}(t) s^{1}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \leq C_{k, q} L^{1} \leq C_{k, q}\left(\frac{L}{A_{1} l^{\alpha}}\right)^{1} A_{1}^{l} l^{l \alpha} .
$$

Since $\left(\frac{L}{A_{1} l^{\alpha}}\right) \leq 1$ if $l \geq\left(\frac{L}{A_{1}}\right)^{\frac{1}{\alpha}}$ define $l_{0} \geq\left[\left(\frac{L}{A_{1}}\right)^{\frac{1}{\alpha}}\right]+1$ where [X] denotes the Gaussian symbol that is the greatest integer not exceeding X .

Therefore for $l>l_{0}$ we have,

$$
\begin{equation*}
\gamma_{c, d, k, l, q} \phi(t, s) \leq C_{k, q} A_{1}^{\prime} l^{l \alpha} \tag{2.3.1}
\end{equation*}
$$

If $k \leq k_{0}$, let us write

$$
C=\max \left\{\left(\frac{L}{A_{1}}\right),\left(\frac{L}{A_{1} 2^{\alpha}}\right)^{2},\left(\frac{L}{A_{1} 3^{\alpha}}\right)^{3}, \ldots \ldots . .\left(\frac{L}{A_{1} l_{0}^{\alpha}}\right)^{1}\right\}
$$

Then again from equation (2.3.1)

$$
\begin{equation*}
\gamma_{c, d, k, l, q} \phi(t, s) \leq C \cdot C_{k, q} A_{1}^{l} l^{l \alpha} \tag{2.3.2}
\end{equation*}
$$

Hence the inequalities (2.3.1) and (2.3.2) together yields

$$
\gamma_{c, d, k, l, q} \phi(t, s) \leq C_{k, q}^{\prime} q_{1}^{l} l^{l \alpha}
$$

implying that $\phi \in P H_{\alpha}(A)$
To prove the continuity of the injection map, consider a sequence $\left\{\phi_{n}\right\}$ in $D\left(I_{1}\right)$ converging to zero then,

$$
\begin{equation*}
\gamma_{c, d, k, l, q} \phi_{b}(t, s)=\sup \left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi_{b}(t, s)\right]\right\|_{A} . \tag{2.3.3}
\end{equation*}
$$

Now from the inductive limit, the subset K_{m} (say) of I_{1} such that $\phi_{b} D\left(k_{m}\right)$ for each $b \geq 1$ and $\phi_{b} \rightarrow 0$ in $D\left(k_{m}\right)$.

If $M=\sup _{k_{m}}\left\|\lambda_{c, d}(t) s^{l} s^{q}\right\|$
Then form equation (2.3.3)

$$
\gamma_{c, d, k, l, q} \phi_{b}(t, s) \leq M \sup _{k_{m}}\left\|D^{k+1} \phi_{b}(t, s)\right\|_{A} \rightarrow 0
$$

as $b \rightarrow \infty$
Hence $\phi_{b} \rightarrow 0$ in $\mathrm{PH}_{\alpha}(A)$ and therefore

$$
T_{\alpha} / D\left(I_{1}\right) \subset T\left(I_{1}\right)
$$

Analogously, we can prove similar results for other spaces defined.

2.4. PROPERTIES OF THE SPACES $P H_{\alpha}(A)$ AND $P H_{\alpha}^{\beta}(A)$:

Proposition: If $\alpha_{1}<\alpha_{2} \& \beta_{1}<\beta_{2}$ then $P H_{\alpha_{1}}^{\beta_{1}}(A) \subset P H_{\alpha_{2}}^{\beta_{2}}(A)$ and the topology of $P H_{\alpha_{1}}^{\beta_{1}}(A)$ is equivalent to the topology induced on the topology $P H_{\alpha_{1}}^{\beta_{1}}(A)$ by $P H_{\alpha_{2}}^{\beta_{2}}(A)$.

Proof: Let $\phi \in P H_{\alpha_{1}}^{\beta_{1}}(A)$
$\gamma_{c, d, k, l, q} \phi(t, s)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \leq C_{k} A_{1}^{l} A_{2}^{q} l^{l \alpha_{1}} q^{q \beta_{1}} \leq C_{k} A_{1}^{l} A_{2}^{q} l^{l \alpha_{2}} q^{q \beta_{2}}$
Hence $\phi \in P H_{\alpha_{2}}^{\beta_{2}}(A)$
Consequently $P H_{\alpha_{1}}^{\beta_{1}}(A) \subset P H_{\alpha_{2}}^{\beta_{2}}(A)$.
The topology of $P H_{\alpha_{1}}^{\beta_{1}}(A)$ is equivalent to the topology $T_{\alpha_{2}}^{\beta_{2}} / P H_{\alpha_{1}}^{\beta_{1}}(A)$. It is clear from the definition of topologies of these spaces.

Proposition: If $m_{1}<m_{2}$ then $P H_{\alpha, m_{1}}(A) \subset P H_{\alpha, m_{2}}(A)$.
The topology of $P H_{\alpha, m_{1}}(A)$ is equivalent to the topology induced on $P H_{\alpha, m_{1}}(A)$ by PH $H_{\alpha, m_{2}}(A)$ i.e. $T_{\alpha, m} T_{\alpha, m_{2}} / P H_{\alpha, m_{1}}$
Proof: Let $\phi \in P H_{\alpha_{1} m_{1}}(A) \therefore \gamma_{k, l, q} \phi(t, s) \leq C_{k, q, \delta}\left(m_{1}+\delta\right)^{1} l^{l \alpha} \leq C_{k, q, \delta}\left(m_{1}+\delta\right)^{1} l^{l \alpha}$
Thus $P H_{\alpha_{1} m_{1}}(A) \subset P H_{\alpha, m_{2}}(A)$.
The second part is clear from the definition of topologies of these spaces.
We now define inductive limit of the spaces $P H_{\alpha, m}(A): m \geq 1$ as follows:

2.5. THEOREM:

$P H_{\alpha}(A)=\bigcup_{m} P H_{\alpha, m}(A)$ and if the space $P H_{\alpha}(A)$ is equipped with the strict inductive limit topology $T_{\alpha, m}$ defined by the injection map from $P H_{\alpha, m}(A)$ to $P H_{\alpha}(A)$, then the sequence $\left\{\phi_{n}\right\}$ in $P H_{\alpha}(A)$ converges to zero if $\left\{\phi_{n}\right\}$ is contained in some $P H_{\alpha, m}(A)$ and converges there into zero.

Proof: The above theorem is immediate consequence of theorem from topological spaces and duality.

Once we show that

$$
P H_{\alpha}(A)=\bigcup_{m} P H_{\alpha, m}(A) .
$$

Clearly,

$$
\bigcup_{m-1}^{\infty} P H_{\alpha, m}(A) \subset P H_{\alpha}(A) .
$$

For proving another inclusion, let $\phi \in P H_{\alpha}(A)$ then

$$
\begin{equation*}
\gamma_{c, d, k, l, q} \phi(t, s)=\sup _{I_{1}}\left\|\lambda_{c, d}(t) s^{l}\left(t D_{t}\right)^{k}\left(s^{-1} D\right)^{q}\left[t s^{-\mu-\frac{1}{2}} \phi(t, s)\right]\right\|_{A} \leq C_{k, q} A_{1}^{l} l^{l \alpha}, \tag{2.5.1}
\end{equation*}
$$

where A_{1} is some positive constant.
Choose an integer depending on the value of A_{1} and $\delta>0$ such that

$$
C_{k, q} A_{1}^{\prime} \leq C_{k, q}(m+\delta)^{\prime} .
$$

Then from equation (2.5.1), we immediately get $\phi \in P H_{\alpha}(A)$ implying that

$$
P H_{\alpha}(A) \subset \bigcup_{m-1}^{\infty} P H_{\alpha, m}(A)
$$

Remark: Analogous to above theorem we can show that the spaces $P H^{\beta}(A), P H_{\alpha}^{\beta}(A), P H_{y}(A)$ are the inductive limits of the corresponding spaces $P H^{\beta, n}(A), P H_{\alpha, m}^{\beta, n}(A), P H_{y, \Delta}(A)$.

3. GENERALISED POTENTIAL HANKEL TRANSFORMS ON $P H_{\alpha}(A)$ SPACES.

Let $f \in\left(D_{+} ; A\right)$.
f is said to be Potential Hankel transformable, if there exist $\sigma_{1}, \sigma_{2}, \sigma_{1}, \sigma_{2} \in[-\infty, \infty]$ such that $\sigma_{1}<\sigma_{2}, \sigma_{1}^{\prime}<\sigma_{2}^{\prime}, f \in\left[P H_{\alpha}\left(\sigma_{1}, \sigma_{2}\right) ; A\right]$ and in addition $f \notin\left[P H_{\alpha}(\omega, z) ; A\right]$ and if either $\omega<\sigma_{1}$ or $z<\sigma_{2}, \omega<\sigma_{1}^{\prime}$ or $z<\sigma_{2}^{\prime}$

$$
\Omega_{f}=\left\{(y, x): \sigma_{1}<\operatorname{Re} y<\sigma_{2} \text { and } \sigma_{1}^{\prime}<\operatorname{Re} x<\sigma_{2}^{\prime}\right\}
$$

with $\frac{t}{y^{2}+t^{2}} \in P H_{\alpha}\left(\sigma_{1}, \sigma_{2}\right), \sqrt{x s} J \mu(x, s) \in P H_{\alpha}\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)$.
Then the Potential Hankel transform is defined as ,

$$
P H\{f(t, s)\}=F(y, x)=\left\langle f(t, s) \frac{t}{y^{2}+t^{2}} \sqrt{x s} J \mu(x, s)\right\rangle,
$$

for $(y, x) \in \Omega_{f}$
$F(y, x)$ is an A-valued analytic function on Ω_{f}.

REFERENCES

[1] Gelfand, I.M., Shilov, G.E., Generalized Function, 2, Academic Press, New York, 1986.
[2] Tekale B.K., Choudhary, M.S., Journal of Mathematical Analysis and Analysis and Application, 139(1), 187, 1989.
[3] Sahu, N.D., Gudadhe, A.S., Vidarbha Journal of Science, 3(1), 16, 2008.
[4] Zemanian, A.H., Generalized Integral transformation, Interscience Publs, New York, 1968.
[5] Zemanian, A.H., Realizability Theory for Continuous Linear System, Academic Press, New York, 1972.

[^0]: ${ }^{1}$ Sipna's College of Engineering and Technology, Amravati,India. E-mail: nandasahu31@gmail.com.
 ${ }^{2}$ Govt. Vidarbha Institute of Science and Humanities, Amravati,India. E-mail: alka.gudadhe@gmail.com.

