SOME SEQUENCES THAT CONVERGE TO A GENERALIZATION OF EULER'S CONSTANT

ALINA SÎNTĂMĂRIAN ${ }^{1}$
Manuscript received: 10.10.2011; Accepted paper: 07.11.2011;
Published online: 01.12.2011

Abstract. We consider a generalization of Euler's constant as the limit $\psi^{\prime}(a)$ of the sequence

$$
\left(\frac{1}{a}+\frac{1}{a+1}+\cdots+\frac{1}{a+n+1}-\ln \frac{a+n-1}{a}\right)_{\operatorname{man}}
$$

where $a \in(0,+\infty)$. The purpose of this paper is to give some sequences that converge to $Y(a)$.

Keywords: sequence, convergence, Euler's constant.
Mathematics Subject Classification: 11Y60, 40 A 05.

1. INTRODUCTION

Euler's constant, usually denoted by γ, is the limit of the sequence $\left(D_{n}\right)_{\operatorname{maN}}$ defined by $D_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n$, for each $n \in N$. It is well-known that $\lim _{n \rightarrow \infty} n\left(D_{n}-\gamma\right)=\frac{1}{z}$ (see $[1-3,5,7,13,14,22,24-27]$. This means that the sequence $\left(D_{n}\right)_{\operatorname{maN}}$ converges slowly to $y=0.5772156649 \ldots$, more precisely, with order 1 .

Sequences that converge faster to γ were given in the literature. D. W. DeTemple proved in [4] that $\frac{1}{24(n+1)^{2}} \approx R_{n}-\gamma \approx \frac{1}{24 n^{2}}$, for each $n \in N$, where

$$
R_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln \left(n+\frac{1}{2}\right)
$$

for each $\eta \in N$. So, the sequence $\left(R_{n}\right)_{\operatorname{may}}$ converges to γ with order 2 .
Considering a sequence used by L. Tóth in [23], namely the sequence $\left(T_{\mathrm{n}}\right)_{\text {naN }}$ defined by

$$
T_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}\right)
$$

for each $n \in N$, T. Negoi proved in [12] that $\frac{1}{48(n+1)^{2}}<\psi-T_{n}<\frac{1}{48 n^{3}}$, for each $n \in N$. As can be seen, the sequence $\left(T_{n}\right)_{\text {neX }}$ converges to γ with order 3 .

Let $\kappa \subset(0, \mid \infty)$. We consider the sequence $\left(y_{n}(a)\right)_{m \in N}$ defined by

$$
y_{n}(a)=\frac{1}{a}+\frac{1}{a+1}+\cdots+\frac{1}{a+n-1}-\ln \frac{a+n-1}{a},
$$

[^0]for each $n \in N$. The sequence $\left(y_{n}(a)\right)_{n a N}$ is convergent (see, for example, [6, p. 453]; see also [15-20] and some of the references therein) and its limit, denoted by $\gamma(a)$, is a generalization of Euler's constant. We have $\gamma(1)=\gamma$.

Results regarding $\gamma(a)$ we have obtained in [15-21].
In Section 2 we give sequences that converge to $\psi^{\prime}(a)$, some of them with order 4.
We remind the following lemma (C. Mortici [8, Lemma]), which is a consequence of the Stolz-Cesaro Theorem, the $\frac{0}{0}$ case. Applications of this lemma in obtaining sequences that converge to $\psi(a)$ or γ can be found, for example, in [9-11].
Lemma 1.1. Let $\left(x_{m}\right)_{n+N}$ be a convergent sequence of real numbers and $x^{*}=1 \lim _{n+\infty} x_{n}$. We suppose that there exists $\alpha \in R, \alpha>1$, such that

$$
\lim _{n \rightarrow \infty} n^{a}\left(x_{n}-x_{n+1}\right)=l \in \bar{R} .
$$

Then there exists the limit

$$
\lim _{n \rightarrow \infty} n^{6-1}\left\langle x_{n}-x^{*}\right\}=\frac{l}{a-1} .
$$

2. SEQUENCES THAT CONVERGE TO $\mathcal{Y}^{\prime}(a)$

Theorem 2.1. Let $a \in(0,+\infty)$ and $b, c, d \in R$. Let $n_{0} \in N$ be such that $a+n-1+c+\frac{a}{a+n-1}>0$, for each $n \in N$, with $n \geq n_{0}$. We consider the sequence $\left(v_{1 u}\left(a_{x} b_{v} c_{v} d\right)\right)_{\text {ntem }}$ defined by

$$
\begin{aligned}
v_{n}(a, b, c, d)- & \frac{1}{a}+\frac{1}{a+1}+\cdots+\frac{1}{a+n-1}+\frac{b}{a+n-1} \\
& -\ln \left(\frac{a+n-1}{a}+\frac{c}{a}+\frac{d}{a(a+n-1)}\right)
\end{aligned}
$$

for each $n \in N$, with $n \geq n_{0}$. Also, we specify that $\%(a)$ is the limit of the sequence $\left(Y_{n}(a)\right)_{\text {na }}$ from Introduction.
(i) If $b+c-\frac{1}{2}$, then

$$
\lim _{n \rightarrow \infty} n\left(v_{n}(a, b, c, d)-\gamma(a)\right)=b-c+\frac{1}{2}
$$

(ii) If $b=c-\frac{1}{2}$ and $d \neq \frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$, then

$$
\lim _{n \rightarrow \infty} n^{2}\left(v_{n}\left(a_{z} c-\frac{1}{2}, c_{i} d\right)-\gamma(a)\right)=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)-d
$$

(iii) If $b=c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$ and $c \neq 0, c \neq \pm \frac{\sqrt{2}}{2}$, then

$$
\lim _{n=\infty} n^{8}\left(v_{n}\left(a_{y} c-\frac{1}{2}, c_{2} \frac{1}{2}\left(c^{2}-\frac{1}{6}\right)\right)-\gamma(a)\right)=\frac{c}{6}\left(c^{2}-\frac{1}{2}\right) .
$$

(iv) If $b-c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$ and $c=0$, then

$$
\lim _{n \rightarrow \infty} n^{*}\left(v_{n}\left(a_{t}-\frac{1}{2}, 0_{t}-\frac{1}{12}\right)-\gamma(a)\right)=\frac{17}{1440} .
$$

(v) If $b=c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{2}\right)$ and $c=\frac{\sqrt{2}}{2}$, then

$$
\lim _{n \rightarrow \infty} n^{4}\left(v_{n}\left(a_{r} \frac{\sqrt{2}-1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{6}\right)-\gamma(a)\right)=\frac{1}{720}
$$

(vi) If $b=c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$ and $c=-\frac{\sqrt{2}}{2}$, then

$$
\lim _{n \rightarrow \infty} x^{4}\left(v_{n}\left(a_{p}-\frac{\sqrt{2}+1}{2},-\frac{\sqrt{2}}{2}, \frac{1}{6}\right)-\gamma(a)\right)=\frac{1}{720}
$$

Proof. Clearly, $\lim _{n \rightarrow \infty} v_{n}\left\{a_{r} b_{y} c_{y} d\right)=\gamma(a)$. We have

$$
\begin{aligned}
& v_{n}(a, b, c, d)-v_{n+1}(a, b, c, d) \\
& =\frac{b}{a+n-1}-\frac{b+1}{a+n}-\ln \left(a+n-1+c+\frac{d}{a+n-1}\right)+\ln \left(a+n+c+\frac{d}{a+n}\right) \\
& =\frac{b}{(a+n)\left(1-\frac{1}{a+n}\right)}-\frac{b \| 1}{a+n}-\ln \left(1+\frac{c}{a+n}+\frac{1}{(a+n)^{2}\left(1-\frac{1}{a+n}\right)}\right) \\
& \quad+\ln \left(1+\frac{c}{a+n}+\frac{d}{(a+n)^{2}}\right)
\end{aligned}
$$

for each $n \in N$, with $n \geq n_{v}$.
Let $m_{0} \in N$ be such that $\frac{a-1}{a+n}+\frac{d}{(a-n)(a+n-2)} \in(-1,1]$ and $\frac{d}{a+n}+\frac{d}{(a+n)} \in(-1,1]$, for each $n \in N$, with $n \geq m_{0}$.

We can write that

$$
\begin{aligned}
& v_{n}\left(a_{i}, \varepsilon, c, d\right)-v_{n+1}\left(a, b_{k}, c, d\right) \\
& =b \frac{s_{n}}{1-s_{n}}-(b+1) s_{n}-\ln \left(1+(c-1) s_{n}+d \frac{s_{n}^{2}}{1-s_{n}}\right)+\ln \left(1+c s_{n}+d s_{n}^{2}\right),
\end{aligned}
$$

where $a_{n}:=\frac{1}{a+n}$, for each $n \in N$, with $n \geq n_{v}$.
Since $s_{n} \in(-1,1),(c-1) s_{n}+d \frac{a_{n}^{n}}{1-s_{n}} \in(-1,1]$ and $c s_{n}+d s_{n}^{2} \in(-1,1)$, for each $n \in N$, with $n \geq$ max $\left\{n_{0}, m_{0}\right\}$, using the series expansion ([6, pp. 171-179, p. 209]) we obtain

$$
\begin{aligned}
w_{n} & \left(u_{1} \varepsilon_{2}, c, d\right)-w_{n+1}\left(c_{,} \varepsilon_{c} c, d\right) \\
= & h s_{n}\left(1+s_{n}+s_{n}^{2}+s_{n}^{8}+s_{n}^{4}+\cdots\right)-(b+1) s_{n} \\
& -s_{n}\left(c-1+d \frac{s_{n}}{1-s_{n}}\right)+\frac{1}{2} s_{n}^{2}\left(c-1+d \frac{s_{n}}{1-\varepsilon_{n}}\right)^{2} \\
& -\frac{1}{3} s_{n}^{8}\left(c-1+d \frac{s_{n}}{1-s_{n}}\right)^{2}+\frac{1}{4} s_{n}^{4}\left(c-1+d \frac{s_{n}}{1-s_{n}}\right)^{4} \\
& -\frac{1}{5} s_{n}^{8}\left(c-1+d \frac{s_{n}}{1-s_{n}}\right)^{8}+\cdots \\
& +s_{n}\left(c+d s_{n}\right)-\frac{1}{2} s_{n}^{2}\left(c+d s_{n}\right)^{2}+\frac{1}{3} s_{n}^{8}\left(c+d s_{n}\right)^{8} \\
& -\frac{1}{4} s_{n}^{4}\left(c+d s_{n}\right)^{4}+\frac{1}{5} s_{n}^{8}\left(c+d s_{n}\right)^{8}-\cdots,
\end{aligned}
$$

for each $n \in N$, with $n \geq \max \left\{n_{0} m_{0}\right\}$. Having in view that

$$
\begin{aligned}
c-1+d \frac{s_{n}}{1-s_{n}}= & c-1+d s_{n}+d s_{n}^{2}+d s_{n}^{8}+d s_{n}^{4}+\cdots \\
\left(c-1+d \frac{s_{n}}{1-s_{n}}\right)^{2}= & (c-1)^{2}+2(c-1) d s_{n}+\left(2(c-1) d+d^{2}\right) s_{n}^{2} \\
& +2\left((c-1) d+d^{2}\right) s_{n}^{2}+\cdots \\
\left(c-1+d \frac{s_{n}}{1-s_{n}}\right)^{8}= & \left.(c-1)^{8}+3(c-1)^{2} d s_{n}+3(c-1)^{2} d+(c-1) d^{2}\right) s_{n}^{2}+\cdots,
\end{aligned}
$$

$$
\begin{aligned}
& \left(c-1+d \frac{s_{n}}{1-s_{n}}\right)^{4}=(c-1)^{4}+4(c-1)^{8} d s_{n}+\cdots \\
& \left(c-1+d \frac{s_{n}}{1-s_{n}}\right)^{2}=(c-1)^{2}+5(c-1)^{4} d s_{n}+\cdots
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& v_{n}(a, b, c, d)-v_{n+1}\left(a, b_{,} c, d\right) \\
& =\left(b-c+\frac{1}{2}\right) s_{n}^{2}+\left(b-2 d+c^{2}-c+\frac{1}{3}\right) s_{n}^{8} \\
& \quad+\left(b-3 d+3 c d^{d}-c^{3}+\frac{3}{2} c^{2}-c+\frac{1}{4}\right) s_{n}^{4} \\
& \quad+\left(b-4 d+6 c d+2 d^{2}-4 c^{2} d+c^{4}-2 c^{3}+2 c^{2}-c+\frac{1}{5}\right) s_{n}^{3}+\cdots
\end{aligned}
$$

for each $n \in N$, with $n \geq \max \left\{n_{0} m_{0}\right\}$.
(i) Because $b \div c-\frac{1}{2}$, we can write that

$$
\lim _{n \rightarrow \infty} n^{2}\left(v_{n}\left(\alpha_{i} b_{2}, c, d\right)-v_{n+1}\left(a_{r} b_{r}, c, d\right)\right)=b-c+\frac{1}{2}
$$

Now, according to Lemma 1.1, it follows that

$$
\lim _{n \rightarrow \infty} n\left(v_{n}(a, b, c, a)-\gamma(a)\right)=b-c+\frac{1}{2}
$$

(ii) Because $b=c-\frac{1}{2}$ and $d \neq \frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$, we can write that

$$
\lim _{n \rightarrow \infty} n^{2}\left(v_{n}\left(a_{,} c-\frac{1}{2}, c, d\right)-v_{n+1}\left(a_{,} c-\frac{1}{2}, c, d\right)\right)=c^{2}-2 d-\frac{1}{6}
$$

Now, according to Lemma 1.1, it follows that

$$
\lim _{n \rightarrow \infty} n^{2}\left(v_{n}\left(a_{n} c-\frac{1}{2}, c, d\right)-\gamma(a)\right)=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)-d
$$

(iii) Because $b=c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$ and $c \neq 0, c \neq \pm \frac{\sqrt{2}}{2}$, we can write that $\lim _{n \rightarrow \infty} x^{4}\left(v_{n}\left(a_{y} c-\frac{1}{2}, c, \frac{1}{2}\left(c^{2}-\frac{1}{6}\right)\right)-v_{n+1}\left(a_{y} c-\frac{1}{2}, c_{r} \frac{1}{2}\left(c^{2}-\frac{1}{6}\right)\right)\right)=\frac{c}{2}\left(c^{2}-\frac{1}{2}\right)$.
Now, according to Lemma 1.1, it follows that

$$
\lim _{n \rightarrow \infty} n^{2}\left(v_{n}\left(a_{y} c-\frac{1}{2}, c_{y} \frac{1}{2}\left(c^{2}-\frac{1}{6}\right)\right)-\gamma(a)\right)=\frac{c}{6}\left(c^{2}-\frac{1}{2}\right) .
$$

(iv) Because $b=c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$ and $c=0$, we can write that

$$
\lim _{n \rightarrow \infty} n^{5}\left(v_{n}\left(a_{z}-\frac{1}{2}, 0_{z}-\frac{1}{12}\right)-v_{n+1}\left(a_{y}-\frac{1}{2}, 0_{p}-\frac{1}{12}\right)\right)=\frac{17}{360}
$$

Now, according to Lemma 1.1, it follows that

$$
\lim _{n \rightarrow \infty} n^{4}\left(v_{n}\left(a_{v}-\frac{1}{2}, 0_{n}-\frac{1}{12}\right)-\gamma(a)\right)=\frac{17}{1440} .
$$

(v) Because $b=c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{2}\right)$ and $c=\frac{\sqrt{2}}{2}$, we can write that

$$
\lim _{n \rightarrow \infty} n^{5}\left(v_{n}\left(a_{2} \frac{\sqrt{2}-1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{6}\right)-v_{n+1}\left(a_{z} \frac{\sqrt{2}-1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{6}\right)\right)=\frac{1}{180^{\prime}}
$$

Now, according to Lemma 1.1, it follows that

$$
\lim _{n \rightarrow \infty} n^{4}\left(v_{n}\left(a_{n} \frac{\sqrt{2}-1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{6}\right)-\gamma(a)\right)=\frac{1}{720^{n}}
$$

(vi) Because $b=c-\frac{1}{2}, d=\frac{1}{2}\left(c^{2}-\frac{1}{6}\right)$ and $c=-\frac{\sqrt{2}}{2}$, we can write that

$$
\lim _{n \rightarrow \infty} n^{\mathrm{s}}\left(v_{n}\left(a_{z}-\frac{\sqrt{2}+1}{2},-\frac{\sqrt{2}}{2}, \frac{1}{6}\right)-v_{n+1}\left(a_{v}-\frac{\sqrt{2}+1}{2},-\frac{\sqrt{2}}{2}, \frac{1}{6}\right)\right)=\frac{1}{180}
$$

Now, according to Lemma 1.1, it follows that

$$
\lim _{n \rightarrow \infty} n^{4}\left(v_{n}\left(a_{z}-\frac{\sqrt{2}+1}{2},-\frac{\sqrt{2}}{2}, \frac{1}{6}\right)-\gamma(a)\right)=\frac{1}{720}
$$

Further results regarding Theorem 2.1 can be found in [21].

REFERENCES

[1] Alzer, H., Abh. Math. Semin. Univ. Hamb. 68, 363, 1998.
[2] Boas, R. P., Math. Mag. 51(2), 83, 1978.
[3] Chen, C.-P., Qi, F., The best lower and upper bounds of harmonic sequence, RGMIA, 6(2), 303-308, 2003.
[4] DeTemple, D. W., Am. Math. Monthly, 100(5), 468, 1993.
[5] Havil, J., Gamma. Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003.
[6] Knopp, K., Theory and Application of Infinite Series, Blackie \& Son Limited, London and Glasgow, 1951.
[7] Lakshmana Rao, S. K., Am. Math. Monthly, 63(8), 572, 1956.
[8] Mortici, C., Appl. Math. Lett. 23(1), 97, 2010.
[9] Mortici, C., Appl. Math. Comput. 215(9), 3443, 2010.
[10] Mortici, C., Appl. Math. Comput. 59(8), 2610, 2010.
[11] Mortici, C., Carpathian J. Math. 26(1), 86, 2010.
[12] Negoi, T., O convergenţă mai rapidă către constanta lui Euler (A quicker convergence to Euler's constant), Gaz. Mat. Seria A, 15(94) (2), 111, 1997.
[13] G. Pólya, G., Szegö, G., Aufgaben und Lehrsätze aus der Analysis (Theorems and Problems in Analysis), Verlag von Julius Springer, Berlin, 1925.
[14] Rippon, P. J., Am. Math. Monthly, 93(6), 476, 1986.
[15] Sîntămărian, A., Autom. Comput. Appl. Math., 16(1), 153, 2007.
[16] Sîntămărian, A., Numer. Algorithms, 46(2), 141, 2007.
[17] Sîntămărian, A., J. Inequal. Pure Appl. Math., 9(2), 7, Article 46, 2008.
[18] Sîntămărian, A., A Autom. Comput. Appl. Math., 17(2), 335, 2008.
[19] Sîntămărian, A., A Generalization of Euler's Constant, Editura Mediamira, ClujNapoca, 2008.
[20] Sîntămărian, A., Approximations for a generalization of Euler's constant, Gaz. Mat. Seria A 27(106) (4), 301, 2009.
[21] Sîntămărian, A., Some new sequences that converge to a generalization of Euler's constant, Creat. Math. Inform. (accepted).
[22] Tims, S. R., Tyrrell, J. A., Approximate evaluation of Euler's constant, Math. Gaz. 55(391), 65, 1971.
[23] Tóth, L., Asupra problemei C: 608 (On problem C: 608), Gaz. Mat. Seria B 94(8), 277, 1989.
[24] Tóth, L., Am. Math. Monthly, 98(3), 264, 1991.
[25] Tóth, L., Am. Math. Monthly, 99 (7), 684, 1992.
[26] Vernescu, A., Ordinul de convergență al șirului de definiţie al constantei lui Euler (The convergence order of the definition sequence of Euler's constant), Gaz. Mat. Seria B $\mathbf{8 8}$ (10-11), 380, 1983.
[27] Young, R. M., Euler's constant, Math. Gaz. 75 (472), 187, 1991.

Spring School on Analysis 2012

First announcement Abstracts
Payment
Rules for traveling
About Paseky
Contacts
Registration
Registered people
Maleriels
History
Previous schools
m@il us

Dear Colleague,

Following a longstanding tradition, the Faculty of Mathematics and Physics of Charles Universty in Prague and the Czech Academy of \$ciences will organize a Spring School or Variational Anslysis V. The School will be held at Paseky nad Jizerou, in a chalet in the Krkonose Mountains, Apr 22-28, 2012.

The program will consist of series of lectures or

Varlatlonal Analysls
 and Its Appllcatlons

delivered by

René I Ienrion
Weierstrass Institu:e, Berlin, Germany
Structure and Stability of Optimization Problems with Probabilistic
Constraints

Alejandro Jofré

Universidad de Chile. Santiago de Chile, Chile
Variational Analysis and Economic Equilibrum
Boris Mordukhovich
Wayne State University, Detroit, USA
Second-order Subdifferential Calculus
Optimal Control of the Sweeping Process
Variational Analysis in Semi-Infinite and Infinite Programming Generalized Newton Methods for Nonsmooth Equations and Robust Optimzation

The purpose of this mesting is to bring iogether researchers with commion Interest In the fleld. There will be opportunities for informal discussions. Graduate students and others beginnirg their mathematical career are encouraged to participate.

[^0]: ${ }^{1}$ Technical University of Cluj-Napoca, Department of Mathematics, 400114, Cluj-Napoca, Romania. E-mail: Alina.Sintamarian@math.utcluj.ro.

