INEQUALITIES IN TRIANGLE

OVIDIU T. POP ${ }^{1}$, NICUŞOR MINCULETE ${ }^{2}$, MIHÁLY BENCZE ${ }^{3}$

Manuscript received: 10.07.2011; Accepted paper: 21.10.2011;
Published online: 01.12.2011

Abstract

In this paper we will demonstrate a new inequality between sine and a function of first degree. Applications of this inequality in triangle are given.

Keywords: geometric inequalities, inequalities in triangle. 2010 Mathematics Subject Classification: 26D05, 26D15, $51 M 16$.

1. INTRODUCTION

In this paper, we will study the inequalities of type $f(a, b, c, A, B, C, r, s, R) \geq 0$ in a triangle, where a, b, c are the lengths of sides $A B, B C, A B, A, B, C$ are the measurements of angles calculated in radians, r is the radius of incircle, s is the semiperimeter and R is the radius of circumcircle.

The following inequality is well known

$$
\begin{equation*}
\frac{2 x}{\pi}<\sin x<x \tag{1.1}
\end{equation*}
$$

for any $x \in\left(0, \frac{\pi}{2}\right)$, and it is called Jordan's Inequality.

2. MAIN RESULTS

In this section, we start with a new inequality, which is a generalization of inequality (1.1).

Theorem 2.1: The inequality

$$
\begin{equation*}
\sin x \leq \frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6} \tag{2.1}
\end{equation*}
$$

holds, for any $x \in(0, \pi)$. The equality holds if and only if $x=\frac{\pi}{3}$.
Proof: We consider the function $f:(0, \pi) \rightarrow R$, defined by:

[^0]$$
f(x)=\sin x-\frac{1}{2} x-\frac{\sqrt{3}}{2}+\frac{\pi}{6}
$$

Because $f^{\prime}(x)=\boldsymbol{\operatorname { c o s }} x-\frac{1}{2}$, we have the following table:

x	0	$\frac{\pi}{3}$	π	
$f^{\prime}(x)$		+++	0	---
$f(x)$		0		

from where, the inequality (2.1) is obtained.
Corollary 2.1. In the triangle ABC , we have that

$$
\begin{equation*}
\boldsymbol{\operatorname { s i n }} A+\boldsymbol{\operatorname { s i n }} B+\boldsymbol{\operatorname { s i n }} C \leq \frac{3 \sqrt{3}}{2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
s \leq \frac{3 R \sqrt{3}}{2} \tag{2.3}
\end{equation*}
$$

Proof: Taking (2.1) into account, we have that $\sin A \leq \frac{1}{2} A+\frac{\sqrt{3}}{2}-\frac{\pi}{6}$ and the analogous for B and C. By summing these inequalities, (2.2) follows. Because $\boldsymbol{\operatorname { s i n }} A=\frac{a}{2 R}$ and $s=\frac{a+b+c}{2}$, from (2.2), it results (2.3).

Remark 2.1. The inequality (2.3) is called D.S. Mitrinović's Inequality [2, 4].
Theorem 2.2. The inequality

$$
\sin x \leq \min _{x \in(0, \pi)}\left(x, \frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)= \begin{cases}x & x \in\left(0, \sqrt{3}-\frac{\pi}{3}\right) \tag{2.4}\\ \frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}, & x \in\left[\sqrt{3}-\frac{\pi}{3}, \pi\right)\end{cases}
$$

is true.
Proof: We have that $\boldsymbol{\operatorname { s i n }} x<x$, for any $x \in(0, \pi), \boldsymbol{\operatorname { s i n }} x \leq \frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}$, for any $x \in(0, \pi), \quad x<\frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}$ for any $\quad x \in\left(0, \sqrt{3}-\frac{\pi}{3}\right)$ and $x>\frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}$, for any $x \in\left[\sqrt{3}-\frac{\pi}{3}, \pi\right)$, from where, the inequality (2.4) results.

Theorem 2.3. In any triangle ABC , there are the following inequalities

$$
\begin{equation*}
\frac{s r}{2 R^{2}} \leq\left(\frac{1}{2} A+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left(\frac{1}{2} B+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left(\frac{1}{2} C+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{s^{2}+r^{2}+4 R r}{4 R^{2}} \leq \sum_{\text {cyclic }}\left(\frac{1}{2} A+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left(\frac{1}{2} B+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \tag{2.6}
\end{equation*}
$$

Proof: In this theorem, we use the identities $\sin A \sin B \boldsymbol{\operatorname { s i n }} C=\frac{s r}{4 R^{2}}$ and $\sum_{\text {cyclic }} \sin A \sin B=\frac{s^{2}+r^{2}+4 R r}{4 R^{2}} \quad[2,3,4]$. From inequality (2.1), for $x \in\{A, B, C\}$ we obtain $\sin A \leq \frac{1}{2} A+\frac{\sqrt{3}}{2}-\frac{\pi}{6}, \sin B \leq \frac{1}{2} B+\frac{\sqrt{3}}{2}-\frac{\pi}{6}, \sin C \leq \frac{1}{2} C+\frac{\sqrt{3}}{2}-\frac{\pi}{6}$.

Multiplying these inequalities, (2.5) follows. Multiplying two by two and taking their sum, we give inequality (2.6).

In [1], we proved the inequality

$$
\begin{equation*}
2\left(2-\frac{r}{R}\right)<A^{2}+B^{2}+C^{2} \tag{2.7}
\end{equation*}
$$

In this paper, we give some refinements of this inequality.
Theorem 2.4. In any triangle ABC , we have the inequalities

$$
\begin{equation*}
4\left(2-\frac{r}{R}\right)-2\left(\sqrt{3}-\frac{\pi}{3}\right) \pi<A^{2}+B^{2}+C^{2} \tag{2.8}
\end{equation*}
$$

and if $A, B, C \geq \sqrt{3}-\frac{\pi}{3}$, then

$$
\begin{equation*}
4\left(2-\frac{r}{R}\right)-3\left(\sqrt{3}-\frac{\pi}{3}\right)(\pi-\sqrt{3})<A^{2}+B^{2}+C^{2} \tag{2.9}
\end{equation*}
$$

Proof. From inequality (2.1), we have

$$
\sum_{\text {cyclic }} \int_{0}^{A} \sin x d x<\sum_{\text {cyclic }} \int_{0}^{A}\left(\frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) d x,
$$

which is equivalent to

$$
3-\sum_{\text {cyclic }} \boldsymbol{\operatorname { c o s }} A<\frac{1}{4}\left(A^{2}+B^{2}+C^{2}\right)+\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)(A+B+C)
$$

But $3-\sum_{\text {cyclic }} \boldsymbol{\operatorname { c o s }} A=2-\frac{r}{R}$ and then, from the inequality above, (2.8) follows.
If $A, B, C \geq \sqrt{3}-\frac{\pi}{3}$, by using inequality (2.4), we have

$$
\sum_{\text {cyclic }} \int_{0}^{A} \sin x d x<\sum_{\text {cyclic }}\left(\int_{0}^{\sqrt{3}-\frac{\pi}{3}} x d x+\int_{\sqrt{3}-\frac{\pi}{3}}^{A}\left(\frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) d x\right)
$$

which is equivalent to

$$
\begin{aligned}
& 3-\sum_{\text {cyclic }} \cos A< \\
& \frac{3}{2}\left(\sqrt{3}-\frac{\pi}{3}\right)^{2}+\frac{1}{4}\left(A^{2}+B^{2}+C^{2}\right)+\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)(A+B+C)-\frac{3}{4}\left(\sqrt{3}-\frac{\pi}{3}\right)^{2}-3\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)\left(\sqrt{3}-\frac{\pi}{3}\right)
\end{aligned}
$$

and by calculus, (2.9) is obtained.
Theorem 2.5. In any triangle ABC , where $A, B, C \geq \sqrt{3}-\frac{\pi}{3}$, we have

$$
\begin{equation*}
16\left(\frac{s^{2}+r^{2}-2 R r}{R^{2}}-3\right)<\sum_{\text {cyclic }}\left(A^{2}+2\left(\sqrt{3}-\frac{\pi}{3}\right) A-\left(\sqrt{3}-\frac{\pi}{3}\right)^{2}\right)\left(B^{2}+2\left(\sqrt{3}-\frac{\pi}{3}\right) B-\left(\sqrt{3}-\frac{\pi}{3}\right)^{2}\right) \tag{2.10}
\end{equation*}
$$

Proof: From the proof of Theorem 2.4, we have that

$$
\int_{0}^{A}\left(\frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) d x=\frac{1}{4}\left(A^{2}+2\left(\sqrt{3}-\frac{\pi}{3}\right) A-\left(\sqrt{3}-\frac{\pi}{3}\right)^{2}\right)
$$

and it is well-known that $\sum_{\text {cyclic }}(1-\boldsymbol{\operatorname { c o s }} A)(1-\boldsymbol{\operatorname { c o s }} B)=\frac{s^{2}+r^{2}-2 R r}{R^{2}}-3$.
By using double integrals in (2.4), we have

$$
\sum_{\text {cyclic }} \int_{0}^{A} \int_{0}^{B} \sin x \sin y d x d y<\sum_{\text {cyclic }} \int_{0}^{A} \int_{0}^{B}\left(x, \frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \min _{y \in[0, \pi)}\left(y, \frac{1}{2} y+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) d x d y
$$

equivalent with

$$
\begin{aligned}
& \sum_{\text {cyclic }}(1-\cos A)(1-\cos B)< \\
& \sum_{\text {cyclic }}\left(\int_{0}^{\sqrt{3}-\frac{\pi}{3}} x d x+\int_{\sqrt{3}-\frac{\pi}{3}}^{A}\left(\frac{1}{2} x+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) d x\right)\left(\int_{0}^{\sqrt{3}-\frac{\pi}{3}} y d y+\int_{\sqrt{3}-\frac{\pi}{3}}^{A}\left(\frac{1}{2} y+\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) d y\right)
\end{aligned}
$$

and taking the remarks above into account, it results (2.10).

Theorem 2.6. For any $x \in\left(0, \frac{\pi}{2}\right)$, there is the inequality

$$
\begin{equation*}
\cos x+\frac{x \sqrt{3}}{2} \leq \frac{1}{2}+\frac{\pi \sqrt{3}}{6} . \tag{2.11}
\end{equation*}
$$

Proof: We consider the function $f:\left(0, \frac{\pi}{2}\right) \rightarrow R$, defined by

$$
f(x)=\frac{1}{2}+\frac{\pi \sqrt{3}}{6}-\cos x-\frac{x \sqrt{3}}{2} .
$$

Because $f^{\prime}(x)=\sin x-\frac{\sqrt{3}}{2}$, we have the following table

x	0		$\frac{\pi}{3}$	$\frac{\pi}{2}$
$f^{\prime}(x)$		--	0	+++
$f(x)$		\leq	0	

from where, the inequality (2.11) is obtained.
Corollary 2.7. For any $x \in\left(0, \frac{\pi}{2}\right)$, there is the inequality

$$
\begin{equation*}
\sin x \leq \frac{x \sqrt{3}}{2}-\frac{\pi \sqrt{3}}{12}+\frac{1}{2} \tag{2.12}
\end{equation*}
$$

Proof: In inequality (2.11), if we make the following substitution, $x \rightarrow \frac{\pi}{2}-x$, with $x \in\left(0, \frac{\pi}{2}\right)$, then we find the inequality of statement.

Remark. 2.2. It is easy to see that $\sin x \leq \frac{x \sqrt{3}}{2}-\frac{\pi \sqrt{3}}{12}+\frac{1}{2} \leq x$, for $x \geq \frac{6-\pi \sqrt{3}}{6(2-\sqrt{3})}$, representing another refinement for the part two of Jordan's inequality.

Corollary 2.8. In the acute triangle ABC , we have that

$$
\begin{equation*}
\cos A+\cos B+\cos C \leq \frac{3}{2} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
R \geq 2 r \tag{2.14}
\end{equation*}
$$

Proof: Taking into account, from (2.11), that $\cos A+\frac{A \sqrt{3}}{2} \leq \frac{1}{2}+\frac{\pi \sqrt{3}}{6}$ and the analogous for B and C. By summing these inequalities, (2.13) follows. Because, we have the identity

$$
\cos A+\cos B+\cos C=1+\frac{r}{R}
$$

from $[3,4]$, it is easy to see that we obtain (2.14), which is due to Euler.

REFERENCES

[1] Bencze, M., Minculete, N., Pop, O. T., Sci. Magna, 7(1), 74, 2011.
[2] Bottema, O., Djordjević, Ř. Ž., Janić, R. R., Mitrinović, D. S., Vasić, P. M., Geometric inequalities, Gröningen, 1969.
[3] Minculete, N., Egalităţi şi inegalităţi in triunghi, Ed. Eurocarpatica, Sf. Gheorghe, 2003.
[4] Mitrinović , D. S., Pečarić, J. E. and Volonec, V., Recent Advances in Geometric Inequalities, Kluwer Academic Publishes, Dordrecht, 1989.

[^0]: ${ }^{1}$ Mihai Eminescu National College, 440014, Satu Mare, Romania. E-mail: ovidiutiberiu@yahoo.com.
 ${ }^{2}$ Dimitrie Cantemir University, 500068, Braşov, Romania. E-mail: minculeten@yahoo.com.
 ${ }^{3}$ Aprily Lájos National College, 500026, Braşov, Romania. E-mail: benczemihaly@gmail.com.

