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Abstract. In this paper we will demonstrate a new inequality between sine and a 
function of first degree. Applications of this inequality in triangle are given. 
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1. INTRODUCTION 
 
 

In this paper, we will study the inequalities of type  f(a, b, c, A, B , C, r, s, R) ≥ 0 in a 
triangle, where a, b, c are the lengths of sides AB, BC, AB, A, B, C are the measurements of 
angles calculated in radians, r is the radius of incircle, s is the semiperimeter and R is the 
radius of circumcircle.  

The following inequality is well known   
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 , and it is called  Jordan’s Inequality. 

 
 
2. MAIN RESULTS 
 
 

In this section, we start with a new inequality, which is a generalization of inequality 
(1.1). 

Theorem 2.1: The inequality 
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                                                  (2.1) 

 

holds,  for any 0  ,x  . The equality holds if and only if  
3

x


 . 

Proof: We consider  the function  0  : ,f R  , defined by:  
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Because   1

2
' cosf x x  , we have the following table: 
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from where, the inequality (2.1) is obtained. 

 
Corollary 2.1. In the triangle ABC, we have that 
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 Proof: Taking (2.1) into account, we have that 
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analogous for B and C. By summing these inequalities, (2.2) follows. Because 
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and 
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 , from (2.2), it results (2.3). 

 
Remark  2.1. The inequality (2.3) is called D.S. Mitrinović’s Inequality [2, 4]. 
 
Theorem 2.2. The inequality  
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is true.   

Proof: We have that sin x x , for any  0  ,x   , 
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, from where, the inequality (2.4) results. 
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Theorem 2.3.  In any triangle ABC , there are the following inequalities 
 

2

 1 3 1 3 1 3

2 2 2 6 2 2 6 2 2 6

s r
A B C

R

   
          
  

 



                (2.5) 

and 
2 2

2

4 1 3 1 3

4 2 2 6 2 2cyclic

s r Rr
A B

R 6

    
      

  
                         (2.6)  

 

Proof: In this theorem, we use the identities 
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   [2, 3, 4]. From inequality (2.1), for    , ,x A B C  we obtain 
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Multiplying these inequalities, (2.5) follows. Multiplying two by two and taking their 

sum, we give inequality (2.6). 
In  [1], we proved the inequality  
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In this paper, we give some refinements of this inequality.  
 
Theorem 2.4.  In any triangle ABC, we have the inequalities 
 

2 24 2 2 3
3

r
A B C

R

            
   

2                                 (2.8) 

and if   3
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  , then 
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Proof. From inequality (2.1), we have 
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But 3 cos
cyclic

r
A 2

R
    and then, from the inequality above, (2.8) follows. 

If   3
3

, ,A B C


  , by using inequality (2.4), we have  
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and by calculus, (2.9) is obtained. 

 

Theorem 2.5. In any triangle ABC, where   3
3
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  , we have  
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Proof: From the proof of Theorem 2.4, we have that  
2

2

0

1 3 1
2 3 3

2 2 6 4 3 3

A
x dx A A

                            



 

and it is well-known that   
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By using double integrals in (2.4), we have  
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and taking the remarks above into account, it results (2.10). 
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Theorem 2.6. For any 
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Proof: We consider the function Rf 
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Because  
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sin'  xxf , we have the following table 
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from where, the inequality (2.11) is obtained. 

 

Corollary 2.7. For any 
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Proof: In inequality (2.11), if we make the following substitution, xx 
2


, with 
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x , then we find the inequality of statement. 

 

Remark. 2.2. It is easy to see that x
x

x 
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x , 

representing another refinement for the part two of Jordan’s inequality. 
 
Corollary 2.8. In the acute triangle ABC, we have that 
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Proof: Taking into account, from (2.11), that 
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A
A   and the 

analogous for B and C. By summing these inequalities, (2.13) follows. Because, we have the 
identity  
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from [3,4], it is easy to see that we obtain (2.14), which is due to Euler. 
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