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Abstract. We show as the main result of the paper that if w is a strong global nonzero solution of homogeneous Navier-
Stokes equations in €2 € R? and 8 € [1/2,1), then there exist Cy > 1 and dy € (0, 1) such that

lw@)l|g
[|w(t+9)|l|g

< C

forallt > Oand d € [0, &), where ||| ||| 5 = || AP || +||-|| is the graph norm. So, measuring w in the graph norm, we exclude
fast decays of w on short time intervals. £} covers the cases of the whole space, the half space, the exterior domain and the
unbounded domain with a non-compact boundary. If, moreover, the solution w decays sufficiently quickly in the energetic
norm || - || for ¢ — oo, then a stronger result holds, namely, there exists C; > 1 and dp € (0, 1) such that

1®)lls
- B

for all¢ > O and é € [0, dp]. The same results hold for the global weak solutions if we consider ¢ > Tp, where Tj is a
sufficiently large positive number.
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1. Introduction

In this paper we study decays on short time intervals of global solutions of the Navier-Stokes equations in domains } C R?3

i_f_ngrw.ijth:D in {3 x (0, c0), (1)
Viw=0 in{ x (0,00), (2)
w‘t:D — Wy, (3)
w=0 ondx (0,00), (4)

where w = w(x,t) = (w1 (z, t), we(x, ), ws(x,)) and p = p(z, ¢) denote the unknown velocity vector and the pressure and
wo = wolz) = (wor(x),woe(z), wes(x)) is a given initial velocity vector.

In [8] Scarpellini studied fast decays of global strong solutions of (1) - (4) on short time intervals. He supposed that €2 is
either a smooth bounded domain in R or the infinite layer R* x (—1/2,1/2) and proved that a fixed global strong solution w
of (1) - (4) cannot go through stages of arbitrarily large decays. More precisely, there exist Cy > 1 and g € (0, 1) such that
w(t)|| < Collw(t+ 4)|| for every ¢t > Oand every é € |0, dg|, where || - || denotes the energetic norm. This inequality holds
even if the norm at the left hand side is replaced with then norm || A2 . ||. The results from [8] were further improved in
[11] for the case of a smooth bounded domain (and also for the case of periodic boundary conditions): If w is a global strong
solution of (1) - (4) then for any k,{,m € N U {0} there exist C' = Cy(k,l,m) > 1, ty = to(k,l,m) > 0and d5 € (0, 1)
such that

| dbw

—7 (t+9)

T \ Yt > to, Yo & [U, CSD] (5)

d®
z20] =
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a5 w

— is the k-th time derivative of .

In (5) || - ||m,2 denotes the Sobolev norm and
If k,{ =0and é = O then (5) gives

() m2 < Collw(®)]], ¥t € [1,00) )

with Cy = Cy(m). Since ||w(?)|| < Coet?, where A; > 0 is the smallest eigenvalue of the Stokes operator As, the
inequality (6) implies the exponential decay of w for ¢ — oo in any Sobolev norm. Results of this type were presented in
some other papers. For instance, in [10], the asymptotic decays of solutions and their time derivatives in the Sobolev norms
were studied for Q@ = R5. In [6] or [7] results on decays of solutions in the norms | AS - ||, & € [0,1] and || 4% - ||, @ € [0, 1),
r € (2,3) (A, is the Stokes operator in L") were studied for €2 in the class uniformly C'® and regular and for exterior domains.

The main goal of this paper is to present several results on decays on short time intervals of global strong solutions of
the Navier-Stokes equations in a wide class of domains €@ C R?, which covers such cases as the whole space, the half-space,
the exterior domains or domains with smooth non-compact boundaries. Further, we will be able to prove a stronger version
of our results under the condition that the solution decays sufficiently quickly in the energetic norm for ¢ — oo. Since it is
known that at least for some domains global weak solutions become strong after a finite time, we will present our results also
in the language of global weak solutions. In the paper we will use the method developed in [11].

2. Preliminaries and results

In the paper L9 = L9(£}), ¢ > 1 denotes the Lebegue spaces with the norm ||-||,. If ¢ = 2, wedenote || || = ||-||2 and (, *)
is the inner product in L?. W% = W*4%(Q),s > 0,q > 2 are the usual Sobolev spaces with the norm || - ||s.4. L2 = L2(}),

resp. Wﬂlf_ = Wﬂlg (), is defined as the closure of {¢ € C§°(02)%; V - o = 0} in L?(02)?, resp. WH2(Q)3. F, denotes the
orthogonal projection of L?(2)? onto 2. A = Aj is the Stokes operator on L2. A is positive selfadjoint with a dense domain
D(A) C L2. If Qisauniform C? domain or if @ = R® then D(A4) = Wy 2()nW22(Q)3 and Au = — P, Au, Yu € D(A).
Let A% o > 0 denote the fractional powers of 4 and e~“%,¢ > 0 be the Stokes semigroup generated by —A. If Ex, A > 0
is the resolution of identity for A, we have A% %y = [~ A% MdE\u and |[A% **u|? = [ A2%e2Md|| Eyul? for
every o > 0,¢ > Oandu € LZ and A% = [, A*dE\uand [|A%u|? = [~ A2*d||E\u|? for every o > Oand u € D(A%).
|| - ||, 8 = O denotes the graph norm which is defined as ||| - |||g = || 4° - || 4 || - ||. Finally, B (w,w) = P, (w - V).

The results concerning global strong solutions will be presented for the following class of domains £2:

Assumption1 LetQ} = R? orQ € R be of the class uniformly C° and regular, that is the boundary 9%} consists of finitely
many disjoint simple C® curves (see [6], Assumption, or [13], Definition 1.2.2).

Results concerning the global weak solutions will be proved under the following stronger assumption on £2.

Assumption 2 et one of the following conditions be satisfied:

(1) € is the whole space R?;
(2) Q is the half space R> ;

(3) £ satisfies Assumption 1 and has a compact boundary.

Let wo € L2. A measurable function w defined on & x (0, o) is called a global weak solution of (1) - (4) if
w e L*((0,00); Lg) N L*((0,T); Wo ), VT >0 (7)
and the integral relation

1
A = (w(®),9:0(t)) + (Vw (i), Vo(t)) + (w(t) - Vw(l), #(t))]dt = (wo, ¢(0))

holds for every 7' > 0 and for all ¢ € C*([0,T7; W[}f_) such that ¢(-,7") = 0. We say that the global weak solution satisfies
the strong energy inequality if

\\W(i)\\2+2/ [Vw(o)|[*do < w(s)]

for s = 0 and almost all s > 0, and all ¢ > s. The existence of global weak solutions satisfying the strong energy inequality
was proved by several methods (see, for example [14]).
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We will also use the following concept of a global strong solution: Let wg € D(Alf 4). Then the function w &
C([0,00); D(AYY)) N C((0,00); D(A)) N CH((0,00); L2) is called a global strong solution of (1) - (4) if w(0) = wyg
and ‘fi—it” + Aw + Py(w - Vw) = 0 for every ¢ > 0. w satisfies the energy equality (see [6], Remark 2)

i
I\W(t)l\2+2/ﬂ |Vw(o)|*do = wol*, Vt > 0.

It implies that w € L°°((0,00); L2) and there exists an increasing sequence of positive real numbers {¢,}5°, such that
t, — oo and ||AY2w(t,)| = |Vw(t,)| — 0if n — co. Since also

| AV u| < | AYZu| V2w Y2, Vu € D(AY?), (8)
it is possible to derive from [6], Theorem 1 and Corollary 1, that w exhibits the following asympiotic decay:
|A%w(t)|| = OF %), t — 0, Va € [0,1]. (9)

Further, it is possible to prove (also by the use of Lemma 3.2 from [6]) that every global strong solution is simultaneously
a global weak solution and, since D(A'/*) is continuously embedded into L? (see [6], Lemma 2.1), every global strong
solution belongs to the space L°((0, o0); L3).

If Assumption 2 is satisfied then every global weak solution w satisfying the strong energy inequality becomes strong
after a finite time: there exists 1o = Th(w) > 0 such that

w e O([Tp, 00); D(AY4)) N C((Ty, 00); D(A)) N CL((Th, 00); L2). (10)

It follows immediately from the above mentioned properties of strong global solutions and by the application of [6], Theorem
1 and [5], Theorem 4. We can conclude, that if Assumption 2 is satisfied then every global weak solution w satisfying the
strong energy inequality exhibit the asymptotic decay (9).

The following theorems are the main results of the paper.

Theorem 3 Let Assumption 1 hold, wg € D(AY*) and wy # 0. Let w be a global strong solution of (1) - (4). Let
B € (1/2,1). Then there exist Cy > 1 and &y € (0,1) such that

EGIIE
< Co, YVt > 1, V6 € (0, 5], (11)
||w(t +0)l]s

Theorem 4 Let Assumption I hold, wy € D(AY*), wy # 0. Let w be a global strong solution of (1) - (4). Let 3 € [1/2,1).
Let further

lw(t)|| < CtF, Vit € [1,00) (12)

for some k < —1 and C' > 0. Then there exist Cy > 1 and éy € (0, 1) such that

lo®llls
< Oy YE> 1, V6 € 0.6, (13)
TG +0)] 0]

Corollary 5 Let Assumption 2 hold and wq € L2, wq # 0. Let w be a global weak solution of (1) - (4) satisfying the strong
energy inequality and let Ty is from (10). Let B € (1/2,1). Then there exist Cy > 1 and éy € (0,1) such that

lw(@)lls
< Cp, YVt 2Upg+1, Vo e (U,{SD] (14)
lw(t+9)l[|s

Moreover, if
lw(®)]| < Ct5, Vit € [1, 00)

for some x < —1 and C' > 0, then there exist C1 > 1 and oy € (0, 1) such that

w(®)ll|g
< O, VE2 I+ 1, Vo € |0,90g]. 15
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The following result from [9] shows that the class of solutions satisfying the assumptions of Theorem 4 is not empty:
Let @ = R? and let w be a weak suitable solution in the sense of Cafarelli, Kohn and Nirenberg (see [2]) with zero average
initial data outside a class of functions of radially equidistributed energy. Then there exists a constant Cy depending only on
norms of the initial data such that

[w(@)]| < Coft+ 1)~/ (16)

Moreover, this solution satisfies the strong energy inequality, as was proved in the appendix of [15]. So, such solutions satisfy
the assumptions of Theorem 4 with s = —5/4.

Let us also remark that unlike the case of a bounded domain, we do not have the inequality || B (w, w)|| < ||AY2w|| || 4P w
3 € [3/4,1) in the case of the unbounded domains, which must be replaced by || B (w, w)| < || AY2w] (|| APw|| + ||2w]|]). Tt
leads to the use of the graph norm ||| - ||| s = || 47 - || +]|-|| in (11) and (14). Theorem 3 says that if we measure a global strong
solution w in the graph norm, then fast decays of w on short time intervals are excluded. Theorem 4 strengthens the result
from Theorem 3 (the graph norm in the denominator of (11) is replaced by the weaker energetic norm in the denominator of
(13)) under the condition that the solution exhibits a sufficiently quick decay in the energetic norm for ¢ — co. We do not
know, whether or not the inequality (13) holds for every global strong solution. Corollary 5 is a reformulation of results from
Theorems 3 and 4 for the case of global weak solutions under the condition that Assumption 2 holds. The inequalities (14)
and (15) hold only for ¢ > Ty + 1 because of a possible existence of blow-ups in the time interval [0, Tj].

It has been already mentioned in Introduction that much stronger results on decays of global solutions on short time
intervals can be achieved if {} is a smooth bounded domain (see (5) or [11] and realize that the Sobolev norm || « || .2 on the
left hand side of (5) is equivalent to the norm || A™/2 . || at least for m € (0,2)). We do not know whether the results for
smooth bounded domains can be generalized for the case of unbounded domains.

b

3. Auxiliary results

Let us present, at first, several auxiliary results. The following inequality can be derived as a consequence of Holder
inequality and Lemma 2.4.3 form [12]: if v € [3/4,1) then there exists ¢; > 0 such that

1B ()] < exl|AY2ull|[[u]]];, Yu € DAY). a7
It is possible to prove elementarily that if 0 < 3 < « then
1]l < 3l[|2]|ar Yu e D(A%). (18)

If @ € |0, 1) then there exists ¢; > 0 such that (see [13])

| A% Aty < %HHH? V>0, Yu e L2, (19)

The moment inequality (see e.g. [13]) can be proved on the basis of the fact that A% = fﬂm A%d B for every a > 0 If
0<z<y<zandue D(A") then

e
— %

| A%u < || A%ul| == | A% ===,

The following lemma and its corollary are substantial for the proof of Theorems 3 and 4. They say, roughly speaking,
that in the Stokes problem the decay of the solution on a time interval is always smaller than the decay on the preceding
interval of the same length.

Lemma 6 /fw e D(A%),w #0,t>0and0 < < a then

| A% | A%~ |
|APe=Atw| — |[APe—2Atw|

Proof: Let £, A > 0 is the resolution of identity for the Stokes operator A. Then

HA%—A%H?:/ AP =22 Bywl||?, t>0. (20)
0
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By the Holder inequality we get easily that

o
| ABeAty|? = / A2Be—2M )| By w2 <
0

o0 1/2 o0 1/2
( / A?ﬁdumuﬁ) ( / Aiﬁe—ﬁmdumuﬁ) _ || AP APe=2At |
0 ]

and immediately

|APw| ||APemHw)|

[4e At © [ 4Pe A0 w

We will show further that the function ¢ — || A%e~A%w||? /|| APe~A%w||? is non-increasing. Firstly, for every v > 0

d
%HA""E_AthQ — || AT 2e=A%y)12, ¢ >0

and therefore

d HA.-:EE—AthQ B QHA::EE—AthQ“A,ﬁ‘A—leE—AthQ . QHACH'UEE_A%UHQHA*QE_AthE
dt |ABe—Atyw|2 | AP e— Aty |4 ’

t > 0.

Further,
HAEEE_AtTUHQHA'G—l_lf/QE_AtTUHQ < HAEE—I_UQE_AthQHA*GE_AthQ?
as follows from the moment inequality. So,

d HACEE—AthQ
<0, t>0
dt |APe—Atw|2 —

and due to the continuity from the right at O we get that the above mentioned function is non-increasing. It means especially,
that

' 2 o — At 2
[47w|? A% AP o -
|APwl? — [[APeAtw]?
Using now (21) and (22), we get
|A%w|  _ [[A%w]|  APw|  [|A%em*w]| ||Afem Mw| _ | A%em M w|
|APe=Atwll  [|APw|| [Afe~Aw| T [[APemHw]| |[APe2Atw]|  [|APem2Atw]’
which completes the proof of the lemma. ()
Corollary 7 Ifw e D(A%), w#0,t > 0and0 < 3 < « then
MNP [le™*w|llo
[le=*wll|g — |[le*4w]||

Proof: The proof of the corollary follows immediately from Lemma 6 and from the elementary fact that if % > BLoand

T = i
oy ~, B2 = . iR BR B o oy forg B1 482
5 = = for some positive a;, 5;,v;, ¢ = 1,2, then 5 > S Ch

4. Decays of solutions on short time intervals

Throughout the following text ¢ denotes the generic constant which can change from line to line.
Proof of Theorem 3: Let the assumptions of Theorem 3 be fulfilled. We will use the method from [11]. We denote

H = £ 3.
s [[[w()ls
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It follows from (9) that H < oo. Since ¢ — ||w(t)|| is a continuous function on [1, co) and |||w(t)|||g > ||w(¢)| > O for all
t € |0, 00), there exist Cy > 1 and d; € (0, 1) such that

lo®llls f
< CF, Vi e |1,3], Vo e (0, a;5]. 2o
TG+l = o 7 & Ladh V0 €100 &

If g e [1/2,3/4), we fix vy € (3/4,1) such that 3/2 — (8 + ) > 0. We set now Dy = 6C and let dy € (0, 4| be such a
number that

EDg 3 51_ﬁ3
1H (Dﬂezma—u) 0 <1, ifBe[3/4,1) (24)
1-p5
and .
5D
4He (Dﬂewo%) 536 < 1 it 8 e [1/2,3/4). (25)
We will prove the following proposition:
Proposition P: Let¢ > 3, 6 € (0, dg]. Let further
o @®llls =
— (' ¢ [ Dy, Dye?@o-1) (26)
IECEIIE (ol
and
lw@®llls 2 [llwis)lllg, Vs € [t 2 +]. (27)
Then there exists t* € [t — 4, ¢) such that
; t (1 _ |||«w<§|||ﬁ)2
l[w@)lls o _llw®llls i) -

Hlw@®llls — [llwt+0)llls (1 , |||w2gg_|||ﬁ)

S0 let the assumptions of Proposition P be fulfilled. We can suppose that

e llmiElllg <C|lmiE)]s (29)

sE[t—a,t

because otherwise (28) would be satisfled immediately. We begin with the integral representation of w:

o)
w(t—+ ) = e Pw(t) —I—/ e~ A=) B(w(t + s),w(t + s)) ds, (30)
0

5
w(t) = e Mw(t —6) —l—/ e~ A=) B(w(t — 6+ 3),w(t — 6+ 8)) ds. (31)
0
Suppose at first that 5 € [3/4,1). Applying gradually (19), (17), (18) and (29) we obtain from (31) that
w(t) — e~ Hw(t - d)|||s <

/5 o(6 — )P || B(w(t — 6+ ), w(t — 6+ 8)|| ds <

)
/ o6 — 8) B | A2 (t — 6 + 5)|| ||t — 6 +5)][||5 ds <
0

o Ml =84 Mlage [l =6+l s o

&
mw(t)mﬁfﬂ =)

[lwt—=d+3s)llls |[lw®)ls
5 51-8
< lw®llEeC? | (6= ) ds = [|[u(®)] ec® 1
So we can get from (24) and (26) that
56 7\ [ ()I]] |Jw(®)|]
_ —AS _ < 2 Y0 B« B
[l@) — e 4wt )] llg < llw@)ls (2&01,3) ONE < il 122 32
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ar

_AS 360 7\ |llw@®)]]5
[|w(t) —e w(td)|ﬁ<|w(t+é)3(4ﬂc0 1;5’) ol

lw@)]lls
4H

lw(t+9)ll|p

(33) now gives immediately that

w(t
[le4w(t) — e=240(t - 8)[[j5 < llw(t+3)[Jg a2,

It follows from (30), (19), (17), (18), (26), (27) and (24) that

[Jw(t +6) — em*w(t)|||s <

)
/D o8 — ) 8|| 42w (t + 5)|| |||t + 9)|||p ds <

wt+s)lll1y2 [|lw+s)llls
lw@+s)llls llw(t+9)llls

)
mw(wa)mﬁ\Hw(t)\uﬁcc/{j (6— 8)P ds =

1—3 " N
llwt +8)ls (4350‘5& )' Ollls. < 1o 1 gy, 1 Ollle

)
ot +9)lls [ o6 -5 (e + 9)lllg ds <

1—p5 4H 4H

(34) and (35) provide the estimate
Ile™*4w(t —8) —w(t+0)l|p < |[|le”*Pw(t —8) — e P w(®)|||s +

le™ P w(t) —w(t+8)|||s < mw(tJr(g)mﬁmwQ(g‘Hﬁ

It follows now from Corollary 7 and (32) and (36) that

4 5 2 (1 _ Hw@lllg )
lle*%w(t - 9)lll3 Hh’”(t)m;%(l oF )

[lwt—8)llls 2 T —r > |
- t—0 | wit
lle=*4%w(t=8)llle ™ |jjwt + o)l (1+ Legglle )

So we put t* = ¢ — 6 and (28) is proved.
Now we suppose that 8 € [1/2,3/4). If we use (30), (19) and (17), we get for every 7 € (0, |

[l + 1)l < [lle™* w(®)]|ly +

H/ ATE_A(T_S)B(w(t + 8),w(t +8)) ds|| + H/ E_A(T_S)B(w(t +s),w(t+s)) ds|| <
0 0

|47~ 2e= AT AP (@) + ()| + /{: o(r —s) || Blw(t + s),w(t+ s))| ds <

IS 5=
ol + | er— s A2+ e+ 9y ds <

G

175 Sup_|[[Jw(t+&)|l12+ ¢ sup le(ws)mm/ (1 — &)~ ||Jw(t+ )| ds.
T £10,8] £€[0,5] 0

Applying now the singular Gronwall inequality (see [1], p.52) we get

i

C

[lw@+7)]|ly < sup |[|w(t+&)|ll1/2, V7 € (0,9]

T2 o s)

and similarly

o

&
~—1/2

It —d+7)]]ly < - sup |[|w(t —d 4-&)|l]1/2, V7 € (0,4],

£€0,9]
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where ¢ is an absolute constant independent of ¢, which will be included into the generic constant ¢. We now use (31), (19),

(17), (18), (38) and (29) and get

&
Ifo(®) — A%t —0)ls < [ o6 — ) 4V 20(t = 6+ 8)| [t — 3+ )]l ds <

Sy

C

&
6 —8) P |||w(t—46 t—§ ds <
6 =) e = 8-+ 8)lls T sup It — 5+ &)l o ds <

)
¢ [lw(t—6+9)lls
@) / sup |[[w(t — 8 + &) ds <
P lo G—sPFs 172 (lw®lls e .

o (®)]|[3C2e05> EH.

Using now (25) and (26) we obtain that

[l (®) — e (e~ 8)lls < s (2He0%3/>E ) MU < o 120 (39

and also

_ 3/9_ w(t
o)) — e~ Hu(t ~ 8)llg < e + )l (aHe0%sy/= @) 12Me ¢

ot + 8)l]js e lE. (40

So we have immediately by (40) that

e w(t) — et — 3) 5 < ||t + ) |1 2 AIE. (1)

It follows from (30), (19), (17), (37), (18), (26), (27) and (25) that
[|w(t+6) — e~ P w)|l]p <

)
/ o(6 — 8) P || AY2w(t + 5)| ||t + 8)|l ds <
]

o

3
= &
/D e —5) P [llw(t+9)llls =73 Sup |w @+ E)l1/2 ds <

[0,8]
5
. Hw(+s)llla
wt L+ 8 / sup |||w(t + & ds <
|H ( )H|f3 ! ({5—5)357—”2 |Hw(t“{5)m;3£€[ﬂ,§]m ( )|Hf3
3/2— w(t w(t
(e -+ ) 1s (aBe0sy2 @) IO < 1y gy 122 42

(41) and (42) provide the estimate

e 0w (t —8) —w(t+0)|l|s < |lle™*w(t — 8) — e P w(t)|||5 +

e 4u(t) — wit + 0)[ls < |t +8) [ AL, (43

The proof of (28) is now finished exactly as in the case 3 € [3/4,1) and the proof of Proposition P is complete.
Letus fixnow t € [1,00), é € (0, dp] and suppose that

[lw@®)l|lg > H/ Do and (44)

@)l 14+1/2
Tw@+ o)l ~ T —1/2)

Since Dy > Cf and dg < 4, it follows from (23) and (45) that ¢ > 3. We can also suppose without loss of generality that

- B, (45)

¢ -
Il®llls = max [l
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and (by possible decreasing of d)

lo®llls
T+ o)l o °

5.

Let us notice that 6 ) < DDEQ(DDD_” (because Dy > 1) and the conditions (26) and (27) are satisfied. By Proposition P there
exists t* € |t — 4, 1) so that

le@lls o le@lls (—"57) a-ypr

> > 6D
®lls = Mot+a)lls (1 M@l ) = T+172

Thus, by (44),
D1 =614 We proved
Proposition P;: Lett € [1,00), 6 € (0,dq] and |||w(?)|||g > H/Dy. Then

w(t*)|||g = Doll|lw®)|||g > DoH/Doy = H and it is the contradiction with the definition of H. Let

o)l
T+ o)l ="

We define now

14 L
2D DD,

D,.=D, 4 ~,Vne N,n>2. (46)
1
(1 - EDDDi...Dn_g)
We have
6 < Dp<h<...<D, 1<D,, ¥Ynec N, (47)
o i b 14+ o5
D, =6Do [ 20T < Dy 0 Vn > 2

=0 (1 = EDgﬂli...Dj) 7= (1 = gég)

and

12— 1
1 1
lnDnilnDD—l—Zln 14 }—2In{1— — 1, V¥a>1.
= 2D 2D

[t follows from the elementary properties of the function x — In (1 + ) that

InD, <1nD S L g gt In Dg 4 3t
oLy In Bt 3, 2D!  2D! = ° T 2(Dp —1)

j=0

and
EDD

D, < Dye?Po-1) | ¥n c N. (48)

We will prove now that for every n € N the following proposition is valid:
Proposition P,: Lett € [1,00), 6 € (0, dg| and

(O —
b L R oW S T

Then

@)l
TG+l =

We will use the mathematical induction. Proposition #; has already been proved. Let us suppose that £,, holds for some
n € N and we will prove the validity of F, 1. Thus,lett € [1,00), d € (0,d0] and |||w(¢)|||g > H/ Dol ... Dy We can

suppose that
llw@)|llg < H/DoD1... Do, (49)

256



JOURNAL OF SCIENCE AND ARTS

since otherwise we would apply Proposition F,, get |||w(?)|||5/|||w(t + 6)|||g < D, < D, and Proposition P, ,; would
be proved. We suppose by contradiction that

[w(@)llls
> Dy, 50
G+ 8)lls = 7+ -
It follows then from (23) and (47) that ¢ > 3. We can suppose without loss of generality that
Hlw@lllg 2 |[[wis)|llg, Vs € [t,t+9] (51)
e (o))
s b
= P 1 52
Mo+ olls ™ Y

Due to (47), (48), (51) and (52) we see that (26) and (27) are satisfied. Therefore, Proposition P, (52), (49) and (46) vyield that
there exists t* € |t — 4,¢) so that

_ lle@llle? - . 2
llw®)llls o, lw®llle (1 i ) > D (1 EDoDi---Dn—i) — D (53)
NMw®llsg = MwE+os (1. Leole) = " i =D
( l 2H ) ( | QDDDL..Dﬂ_i)

If we use the assumptions of Proposition £, ; we obtain that

H H
DoD1...Dn  DoD1...Dna

1lw(E)lllg 2 Dulllw®)|llg > Dn

and according to Proposition F,, we get that

o)1
@lls <™

which is the contradiction to (53). Therefore, (50) does not hold, in fact

lw(@)]lls
|w(t+0)ll|g

< Dpa

and Proposition F, 1 is proved. We proved that Proposition #, holds for every n € V.

We now finish the proof of Theorem 3. Let us fix ¢t € [1,00) and 6 € (0,dg]. Then there exists n € N so that

w(t)|||g > DDD;F.I.DH_i . By Proposition F,, and by (48) we get that

lle®llls  _ o ol
[+ o)l

5L

Setting Uy = DDEE{DDE” the proof of Theorem 3 is complete. ()

Proof of Theorem 4: Let the assumptions of Theorem 4 be fulfilled. We can suppose due to (18) that 7 € [3/4,1). Since
w(t) # Oforall ¢ € [1,00), it follows from the continuity of the function ||| - |||1/2 on [1, co) that there exist CJ > 1 and
6y € (0,1) such that

ol f
< G Wiz 1,3 ¥oe |0.8]]. (54)
T+ Ol = o 7t l3, voelql

In the proof the generic constant ¢ > 0 will include also the constant Cy from Theorem 3. Let us now choose dq € (0, 4] in
such a way that 24q is smaller than 0y from Theorem 3 and

cby /(1 -B) < 1. (55)
Let @ = /4 — 3/4. We also set
5

Dy = Cle™ +il% (56)

We will show at first that 5 s

T — { 1 —1

et —llls , llw@llls 022 -

lw®|lli2 — l[lwE+do)||]12 (1+¢)
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Thus, let £ > 3. We begin with the integral representation of w:

oy
wit+ &) = e A0w(t) + / e~ M=) Blw(t+ 8), wlt + 8)) ds, (58)
0

oy
w(t) = =A%t — 5o) + / e~ A=) B (t — 6o+ 5),w(t — 0o + 8)) ds. (59)
0
Since ||AY2w| < ||w]|Y/?|| Aw| /2, we use (59), (19), (17), Theorem 3, (12), (9) and (55) and get the following estimate:
[Jw(t) — e”*Pw(t — &)|lls <

oy
/ c(60 — 5) P | A2 w(t — 8o + )| [[|w(t — do + 5)|||s ds =
0

% wl(t — dg + s
le@llls [ e(0o— ) 14¥2u(t — b + ) 10— g <
0 lw(®)l]5
Gﬂé_ﬁtm/z—lﬁ y < pf2—1/2 ; 60
- Jw(@®)l]ls < [l (@)]l] . (60)
Similarly, using now the inequality ||.A%/4w]|| < [|w|*/*|| Aw||3/, we have

[Jw(t) — e= 4w (t — o)l |12 <

oy
[ el — o) 214Nt — 6o+ )] ot — s+ 8)l 17 s <
0

&
w(t Dc{? —3‘1f/2H|w(t_dﬂ+S)H|l’@ pre/4=38/4 dg <
llw®lll2 | (b0 —s) <
0

|[w(@®)|[|1/2
ebg! 24434 [lw(t)]| |1 j2 < /4734 [w(®)]]]1 /o (61)
and also
[Jw(t) — emA%w(t — do)l[l1/2 < ¥4 [w(t + do)ll]1/2/2. (62)
It follows from (b2) that
lle™4%w() — e *A%w(t — o)l[[1/2 < /474 | [ (t + do)|||1/2/2 (63)

Beginning now with (58), we can also get
[le™*%w(t) — w(t + do)||l1/2 <

oy
/ o6 — )2 42wt + 8) ||| [t + 5)]|5/a ds <
]

& w(E+s)|]1/2
wit + 6 / c(8y — 8)~1/2 t’im_gﬁlds{_i
H| ( U)H‘IXQ . ( 0 ) |H®U(i‘+'5ﬂ)“1{2
ebg! 244304 [Jao(t + 8o)| |12 < /4734 || (t + 60)|]1/2/2- (64)
Thus, (63) and (64) yield that
|le=24%w(t — do) — wlt + 8o)||[172 < /4734w (t + d0)||1/2. (65)

If we now apply gradually (61), Corollary 7, (60) and (65), we obtain

llw@—oo)llls o Nt~ 8)llls
(@) [Tay2(t — /47374 = [l 4wt — 8o)l172 ~
le=ow(t—do)llls  lllw®)][[s( — /212

[|e=24%w (¢t —do)[|l1j2 — llw(E+ bo)lll1/2 (1 4 ¢/4=3/4)

and (57) immediately follows.
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Let us fix now ¢ > 3 and suppose that

I®lls  _ s pe -
|2 4-00)|]|1/2
We will show that this inequality leads to a contradiction. If we use (57) for this ¢ we get
[[w@® —do)lllg _ (1 —2°)°
> C o
[ (@]]]1/2 (1+1°)

There exists n € /N such that

If we use (5b7) gradually for ¢ — dg,t — 24p, ...t — (n — 1)dp, we end up with

|l20(t — ndo)|||s : (t — (k—1)d)")’
[l — (. —1)d0)|[|1/2 o= H (1+(t—(k—1)5u)9)

=88
Using now the elementary properties of the function z — In (1 + =) and (67), we get

Inn = i?]n (1—@F—(k—1)6)") —In(1+ (¢t — (k—1)dp)?) >

ge=f
—4(t — (k—1)o t—(k—1)0 do(t — (k—1)0
; (t— (k—1)80)" — (t — (b —1)d0)” = %Z 0 )dg)” >
3 2R 5
S t? dt = _
CSD 1 (9+1)(5g

Therefore, n > e % and
|20t —ndo)l||

[lw(t — (n—1)do)|[[1/2

[t follows now from (54), (67) and (68) that Cj > Ce CEEVEr , which together with (66) and (56) gives the following contra-
diction:

> CleT i, (68)

5
Do <O < OE,E_(E"H:'&D = [y.

Therefore, we proved that if £ > 3 then

le@llls
T+ bo)lll1e

Now it is possible to use the integral representation (58) and show that there exists a constant ¢; dependant only on the
solution w and dg such that

lw(+ )|l
o (@)]]1/2

< ¢1, Vi > 2and Vd € |0, dg.

Therefore, we can write

[lw®lllsg ~ _  llw®lllg w4 %)l

— < Dncl, Vi > 3 and Yo € [U.J. {SD] (69)
|w(E+ )l NlwE+d)ll1e [[lwE+ )12
If we use now the inequalities |||w|||?,, < |||w]||gl||w||li—p and |||w]||]_ 5 < 2|||w]||l2—2||w|| (which follow from the
moment inequality), we finally obtain (using also (69) and (18)) that
[lw®lllg _ _ w®llls  Nwl+ )l [[lwE+d)llh-s _
lwE+8)|  [[Jw@+ )l lllw@+d)lllig  |wE+d)] —
2Dy 11Ol I+ Dt ot + Dllss
[lw(+ O)|l1y2 |[lwE+0)l[li-p [|w(t+ d)|l1-5

L+ 6
cD2c? |+ 9l < cD2c? wit+0)llls < eD3c3,Vt > 3and V6 € [0, 6.
[+ )]l1-p |w(E+9)||]1/2
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We set C; = cD3c; and the proof of Theorem 4 is complete. ()
Proof of Corollary 5: Let the assumptions of Corollary 5 be satisfied. As was discussed in the second section, w is a global
strong solution on |7y, o). By the application of Theorems 3 and 4 we get immediately the assertion of Corollary 5. ()
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