Z-VALUED FUNCTION ON SEMIGROUPS, Z-VALUED SESQUILINEAR FORMS

L. CIURDARIU ¹, P. GASPAR ²

Abstract: We shall formulate and study some boundedness conditions for a Z-valued kernel on a semigroup and for Z-valued positive definite functions on *-semigroups. Then sesquilinear Z-valued forms and $\mathfrak{F}(\mathfrak{H},Z)$ -valued kernels are introduced, by analogy to the sesquilinear forms, replacing $\mathbb C$ by the admissible space in the Loynes sense Z. It is shown that the set $\mathfrak{F}(\mathfrak{H},Z)$ it is a *-linear space which it is endowed with a positive cone $\mathfrak{F}_+(\mathfrak{H},Z)$ induced by the positive cone from Z. A theorem of Kolmogorov-Aronszajn type is studied for positive definite $\mathfrak{F}(\mathfrak{H},Z)$ -valued kernels.

Keywords: Loynes spaces, kernels, *-semigroups 2000 Mathematics subject classification: 47A45; 42B10

1. Introduction

We recall see [1], the definition of an admissible space. A locally convex space Z is called admissible in the Loynes sense if the following five conditions are satisfied: Z is complete; there is a closed convex cone in Z, denoted Z_+ , that defines an order relation on Z (that is $z_1 \leq z_2$ if $z_2 - z_1 \in Z_+$); there is an involution in Z, $Z \ni z \to z^* \in Z$ (that is $z^{**} = z$, $(\alpha z)^* = \overline{\alpha} z^*$, $(z_1 + z_2)^* = z_1^* + z_2^*$), such that $z \in Z_+$ implies $z^* = z$; the topology of Z is compatible with the order (that is there exists a basis of convex solid neighbourhoods of the origin); and any monotonously decreasing sequence in Z_+ is convergent.

Let Z be an admissible space in the Loynes sense. A linear topological space \mathcal{H} is called *pre-Loynes* Z-space if satisfies the following properties:

 \mathcal{H} is endowed with an Z-valued inner product (gramian), i.e. there exists an application $\mathcal{H} \times \mathcal{H} \ni (h, k) \to [h, k] \in \mathbb{Z}$ having the properties:

 $[h,h] \geq 0$; [h,h] = 0 implies h = 0; $[h_1 + h_2, h] = [h_1,h] + [h_2,h]$; $[\lambda h,k] = \lambda [h,k]$; $[h,k]^* = [k,h]$ for all $h,k,h_1,h_2 \in \mathcal{H}$ and $\lambda \in \mathbb{C}$. The topology of \mathcal{H} is the weakest locally convex topology on \mathcal{H} for which the application $\mathcal{H} \ni h \to [h,h] \in Z$ is continuous. Moreover, if \mathcal{H} is a complete space with this topology, then \mathcal{H} is called $Loynes\ Z-space$.

It is known, see [1], that if p is a continuous and monotonous seminorm on Z, then $q_p(h) = (p([h,h]))^{1/2}$ is a continuous seminorm on \mathcal{H} .

Also, by [1], if \mathcal{H} is a pre-Loynes Z-space and \mathcal{P} is a set of monotonous (increasing) seminorms defining the topology of Z, then the topology of \mathcal{H} is defined by the sufficient and directed set of seminorms $Q_{\mathcal{P}} = \{q_p \mid p \in \mathcal{P}\}.$

Furthermore in [1], for every monotonous seminorm p on Z we have:

¹ Politehnica University of Timişoara, P-ta Victoriei no. 2, 300006 Timişoara, Romania, e-mail: cloredana43@yahoo.com

West University of Timişoara, Blvd. V. Parvan 4, 300223, Timişoara, Timiş, Romania, e-mail: pasto@math.uvt.ro

Paper presented at The VII-th International Conference on Nolinear Analysis and Applied Mathematics (ICNAAM), Târgovişte, 26-27 june, 2009

 $p([h,k]) < 2q_n(h) \cdot q_n(k)$ for all $h, k \in \mathcal{H}$.

We suppose that $mq_{p_2}(x) \leq q_{p_1}(x) \leq Mq_{p_2}(x)$, $(\forall)x \in \mathcal{H}$, with p_1, p_2 continuous and increasing seminorms on Z and M finite, $M \geq m > 0$. Then,

Because p_2 is increasing, we have

$$q_{p_2}^2(\frac{x}{q_{p_2}(x)} + \frac{y}{q_{p_2}(y)}) \ge 2\frac{p_2([x,y] + [y,x])}{q_{p_2}(x)q_{p_2}(y)}$$

Thus,

$$2\frac{p_2([x,y]+[y,x])}{q_{p_2}(x)q_{p_2}(y)} \le \frac{M^2}{m^2} \left\{ 2 + \frac{p_1([x,y]+[y,x])}{q_{p_1}(x)q_{p_1}(y)} \right\},\,$$

or

$$\frac{p_2([x,y]+[y,x])}{q_{p_2}(x)q_{p_2}(y)} \le \frac{M^2}{m^2} \left\{ 1 + \frac{1}{2} \frac{p_1([x,y]+[y,x])}{q_{p_1}(x)q_{p_1}(y)} \right\}.$$

We recall by the Definition 1.1, [2], that a (pre-) Loynes Z-space \mathcal{H} , consisting of Z-valued functions on Λ , admits reproducing kernel, if there exists a positive definite kernel $\Gamma = \Gamma_{\mathcal{H}}$, which satisfies the following conditions:

- (a) $\Gamma(\lambda, \cdot) \in \mathcal{H}$, for all $\lambda \in \Lambda$;
- (b) $h(\lambda) = [h(\cdot), \Gamma(\lambda, \cdot)]$, for all $\lambda \in \Lambda$ and $h \in \mathcal{H}$.
- (c) the closed subspace generated by $\Gamma(\lambda,\cdot)$, $\lambda \in \Lambda$ is accessible in \mathcal{H} .

2. Operatorial kernels

In this section \mathcal{H} will be first a complex vector space, Z an admissible space in the Loynes sense and $\mathcal{F}(\mathcal{H}, Z)$ the set of Z-valued sesquilinear functions on \mathcal{H} , i.e. the set of operators B,

$$B: \mathcal{H} \times \mathcal{H} \to Z$$

which satisfy

(1)
$$\begin{cases} B(\alpha_1 h_1 + \alpha_2 h_2, k) = \alpha_1 B(h_1, k) + \alpha_2 B(h_2, k), \\ B(h, \beta_1 k_1 + \beta_2 k_2) = \overline{\beta}_1 B(h, k_1) + \overline{\beta}_2 B(h, k_2), \end{cases}$$

for any $h, h_j, k, k_j \in \mathcal{H}$; $\alpha_j, \beta_j \in \mathbb{C}$ (j = 1, 2).

Putting $Z = \mathbb{C}$, we see that the elements of $\mathcal{F}(\mathcal{H}, \mathbb{C})$ are known as sesquilinear forms (or functionals). In analogy with this fact, the elements $B \in \mathcal{F}(\mathcal{H}, Z)$ will be called Zsesquilinear forms. It is obvious that $\mathcal{F}(\mathcal{H}, Z)$ is endowed in a natural way with a structure of linear space, every element of $\mathcal{F}(\mathcal{H}, Z)$ satisfying the parallelogram rule and a calculus rule by diagonally values

(2)
$$B(h+k,h+k) + B(h-k,h-k) = 2[B(h,h) + B(k,k)]$$

$$B(h,k) = \sum_{j=0}^{3} i^{j} B(h + i^{j}k, h + i^{j}k)$$

with *i*-imaginary unit $h, k \in \mathcal{H}$.

Often we will suppose that \mathcal{H} is endowed with a gramian such that \mathcal{H} is a Loynes Zspace. In this case we will say that B is *continuous* if for every seminorm $p \in \mathcal{P}_Z$, there exists a constant $M_p > 0$ and two seminorms $p_1, p_2 \in \mathcal{P}_Z$ so that

(3)
$$p(B(h,k)) \le M_p q_{p_1}(h) q_{p_2}(k); \quad h, k \in \mathcal{H}.$$

Following, we will name the set of this Z-sesquilinear forms by $\mathcal{FC}(\mathcal{H}, Z)$.

Particularly we will say that Z-form $B \in \mathcal{F}(\mathcal{H}, Z)$ is q-bounded and we shall denote this by $B \in \mathcal{F}Q(\mathcal{H}, Z)$, if for any $p \in \mathcal{P}_Z$, there exists a constant $M_p > 0$ such that

(4)
$$p(B(h,k)) \le M_p q_p(h) q_p(k), \quad h, k \in \mathcal{H}.$$

If above we can choose M_p independent of $p \in \mathcal{P}_Z$, then we shall say that B is universally bounded and we shall denote $B \in \mathcal{FU}(\mathcal{H}, Z)$.

It is obvious that the above subclasses are linear subspaces in $\mathcal{F}(\mathcal{H}, Z)$ and satisfy the inclusions

(5)
$$\mathfrak{F}\mathcal{U}(\mathcal{H},Z) \subset \mathfrak{F}Q(\mathcal{H},Z) \subset \mathfrak{FC}(\mathcal{H},Z).$$

It was noticed that (4) take places if B satisfies a "q-boundedness condition" concerning to the gramian, i.e. for $p \in \mathcal{P}_Z$ there exists $N_p > 0$ such that

(6)
$$p(B(h,k)) \leq N_p p([h,k]), \quad h, k \in \mathcal{H}.$$

Indeed, applying in the right side the inequality $p([h, k]) \leq 2q_p(h) \cdot q_p(k)$ we shall obtain (4) with $M_p = 2N_p$. A similar fact take places if we impose a "universally boundedness" condition concerning to the gramian.

We shall say that Z- sesquilinear form B is positive, if satisfies

(7)
$$B(h,h) \ge 0, \quad h \in \mathcal{H}$$

and symmetrical, if

(8)
$$B(h,k) = [B(k,h)]^*, \quad h,k \in \mathcal{H}.$$

Moreover, in $\mathcal{F}(\mathcal{H}, Z)$ we can introduce an involution using the involution of Z hereby:

(9)
$$B^*(h,k) := [B(k,h)]^*, \quad h,k \in \mathcal{H}.$$

Indeed, it is easy to see that B^* thus defined is also a Z- sesquilinear form, and the application

$$\mathfrak{F}(\mathcal{H},Z)\ni B\to B^*\in\mathfrak{F}(\mathcal{H},Z)$$

is an involution, i.e. satisfies

$$B^{**} = B$$

$$(\alpha_1 B_1 + \alpha_2 B_2)^* = \overline{\alpha}_1 B_1^* + \overline{\alpha}_2 B_2^*,$$

for any $B, B_1, B_2 \in \mathfrak{F}(\mathcal{H}, Z)$ and $\alpha_1, \alpha_2 \in \mathbb{C}$.

In this context, Z-positive forms are self-adjoint elements and the symmetrical forms are exactly the self-adjoint elements from $\mathcal{F}(\mathcal{H}, Z)$. We use now for the first and the second class the notations: $\mathcal{F}_+(\mathcal{H}, Z)$, respectively $\mathcal{F}_h(\mathcal{H}, Z)$.

An another particular subclass in $\mathcal{F}(\mathcal{H}, Z)$ is the subclass $\mathcal{FB}(\mathcal{H}, Z)$ consisting of those Z-form B for which there exists a constant $M_B > 0$, such that $B(h, h) \leq \mu_B[h, h]$, $h \in \mathcal{H}$. Because the last relation implies $B(h, h) = B(h, h)^*$ and $-\mu_B[h, h] \leq B(h, h)$ it results that these Z-forms are symmetrically and for its it has sense in analogy with the case of bounded operators, to consider the borders

$$m_B := \sup\{\mu > 0 : -\mu[h, h] < B(h, h), h \in \mathcal{H}\}$$

and

$$M_B := \inf\{\nu > 0 : B(h, h) \le \nu[h, h], h \in \mathcal{H}\},\$$

which are optimally with the property

$$m_B[h, h] \le B(h, h) \le M_B[h, h], \quad h \in \mathcal{H}.$$

A modality to obtain Z-sesquilinear forms on a Loynes Z-space \mathcal{H} is given, as in the case of Hilbert spaces, using operators and inner product.

Indeed if $T \in \mathcal{L}(\mathcal{H})$, then defining

(10)
$$B_T(h,k) := [h,Tk] \quad (h,k \in \mathcal{H})$$

we shall obtain that $B_T \in \mathcal{F}(\mathcal{H}, Z)$.

It is easy to observe that the application

(11)
$$\mathcal{L}(\mathcal{H}) \ni T \to B_T \in \mathcal{F}(\mathcal{H}, Z)$$

is linear and one-to-one.

If $T \in \mathcal{L}^*(\mathcal{H})$ then the easy calculus

$$B_T^*(h,k) = [B_T(k,h)]^* = [k,Th]^* = [Th,k] = [h,T^*k] = B_{T^*}(h,k), \quad (h,k \in \mathcal{H}),$$

shows that the restriction to $\mathcal{L}^*(\mathcal{H})$ of $T \to B_T$ is an involution.

It is also easy to notice that $T \in \mathcal{L}^*(\mathcal{H})$, if and only if $B_T^* = B_S$ for a certain $S \in \mathcal{L}(\mathcal{H})$.

Indeed, the relation $B_T^* = B_S$ is equivalent with [Th, k] = [h, Sk], for $h, k \in \mathcal{H}$ i.e. it is equivalent with $S = T^*$.

More, this observation allows us to establish that the application (11) isn't generally onto.

Indeed, if $T \in \mathcal{L}(\mathcal{H}) \setminus \mathcal{L}^*(\mathcal{H})$, then doesn't exist any $S \in \mathcal{L}(\mathcal{H})$ such that $B_S = B_T^*$, because otherwise we should have $S = T^*$.

Of course we can refer also on the restrictions of the application (11). For example if $T \in \mathcal{C}(\mathcal{H})$, by

$$q_p(Th) \le M_p q_{p_0}(h), \quad (h \in \mathcal{H})$$

we have successively

$$p(B_T(h,k)) = p([h,Tk]) \le 2q_p(h)q_p(Tk) \le 2M_pq_p(h)q_{p_0}(k), \quad h,k \in \mathcal{H},$$

which means $B_T \in \mathcal{FC}(\mathcal{H}, Z)$. By the same reasoning on $T \in \mathcal{C}Q(\mathcal{H})$, having above $p_0 = p$, we will infer that B_T satisfies (4) where M_p is replaced with $2M_p$, i.e. $B_T \in \mathcal{F}Q(\mathcal{H}, Z)$.

By analogy: $T \in \mathcal{CU}(\mathcal{H}) \Rightarrow B_T \in \mathcal{FU}(\mathcal{H}, Z)$ and

$$T \in \mathcal{L}_{+}(\mathcal{H}) \Rightarrow B_{T} \in \mathcal{F}_{+}(\mathcal{H}, Z), \ T \in \mathcal{L}_{h}(\mathcal{H}) \Rightarrow B_{T} \in \mathcal{F}_{h}(\mathcal{H}, Z).$$

If we analyze also the boundedness relations for the forms from $\mathcal{F}B(\mathcal{H}, Z)$, we easily observe using the inequality from Consequence 1.1.1 (see [2]) or [1], that $T \in \mathcal{B}_h(\mathcal{H})$ implies $B_T \in \mathcal{FB}(\mathcal{H}, Z)$ and more, its borders coincide: $m_T = m_{B_T}$, $M_T = M_{B_T}$.

By analogy with the expression of norm of elements $T \in \mathcal{B}_h(\mathcal{H})$

$$||T|| = \max\{|m_T|, |M_T|\}, \quad T \in \mathcal{B}_h(\mathcal{H})$$

is clear that $\mathcal{FB}(\mathcal{H}, Z)$ becomes norm space with

$$||B|| := \max\{|m_B|, |M_B|\}, \quad B \in \mathfrak{FB}(\mathcal{H}, Z).$$

Rejoining the above results, we can enunciate:

Theorem 2.1 (i) Given a (complex) linear space \mathcal{H} and a locally convex space Z admissible in the Loynes sense, the set $\mathcal{F}(\mathcal{H}, Z)$ of Z-sesquilinear forms on \mathcal{H} is a *-linear space, the involution is defined by (9) and is endowed with a positive cone $\mathcal{F}_+(\mathcal{H}, Z)$ induced of the positive cone in Z by (7).

Besides, every Z-sesquilinear forms satisfies the rules (2).

- (ii) If \mathcal{H} is a Loynes Z-space, then there exists a natural embedding of $\mathcal{L}(\mathcal{H})$ in $\mathcal{F}(\mathcal{H}, Z)$ given of (10) and (11) with the properties:
- (a) for $T \in \mathcal{L}(\mathcal{H})$ we have that $T \in \mathcal{L}^*(\mathcal{H})$ if and only if $B_T^* = B_S$ for a $S \in \mathcal{L}(\mathcal{H})$, case when $S = T^*$:
- (b) generally it isn't onto;
- (c) its restriction to $\mathcal{L}^*(\mathcal{H})$ keeping the involution, consequently the positive and symmetrical elements;
- (d) Its restrictions range to the subspaces $C(\mathcal{H})$, $CQ(\mathcal{H})$, $CU(\mathcal{H})$, $\mathcal{B}_h(\mathcal{H})$ of $\mathcal{L}(\mathcal{H})$ are contents in $FC(\mathcal{H}, Z)$, respectively $FQ(\mathcal{H}, Z)$, $FU(\mathcal{H}, Z)$, $FB(\mathcal{H}, Z)$ above definite.

In particular the elements from $\mathfrak{FB}(\mathfrak{H},Z)$ are symmetrical.

3. $\mathcal{F}(\mathcal{H}, Z)$ -valued kernels

In this section we shall consider the kernels $\mathcal{F}(\mathcal{H}, Z)$ -valued on an arbitrary set \wedge and for this we shall prove a typical factorization theorem. But, first we shall give an example of such kernel.

Let \mathcal{H} be a linear space, Z-an admissible space, \wedge an arbitrary set and $\mathcal{F}(\mathcal{H}, Z)$ the space of Z-sesquilinear forms on \mathcal{H} which is Z-valued.

A $\mathcal{F}(\mathcal{H}, Z)$ -valued kernel on \wedge , $C: \wedge \times \wedge \to \mathcal{F}(\mathcal{H}, Z)$ is called positively defined if,

(12)
$$\sum_{i,l=1}^{n} C(s_j, s_l)(h_l, h_j) \ge 0 \text{ for any } n \in \mathbb{N}, \ s_1, \dots, s_n \in \Lambda$$

and $h_1, \ldots, h_n \in \mathcal{H}$. It is obvious that this fact is equivalent with the fact that the associate Z-valued kernel Γ_C on $\wedge_1 = \wedge \times \mathcal{H}$ defined by $\Gamma_C(\lambda, \mu) = C(t, s)(h, k)$, where $\lambda = (s, h)$, $\mu = (t, k)$ is positively defined.

Example 3.1 Let \mathcal{H} be a linear space, \mathcal{K} a Loynes Z-space and a family of linear operators defined by

$$D: \wedge \to \mathcal{L}(\mathcal{H}, \mathcal{K}).$$

Then, it is easy to see that the kernel $C: \wedge \times \wedge \to \mathcal{F}(\mathcal{H}, Z)$ defined by $C(s,t)(h,k) := [D(t)h, D(s)k]_{\mathcal{K}}$ is $\mathcal{F}(\mathcal{H}, Z)$ -valued and positively defined. Indeed,

$$\sum_{j,l=1}^{n} C(s_j, s_l)(h_l, h_j) = \sum_{j,l=1}^{n} [D(s_l)h_l, D(s_j)h_j]_{\mathcal{K}} = \left[\sum_{l=1}^{n} D(s_l)h_l, \sum_{j=1}^{n} D(s_j)h_j\right]_{\mathcal{K}} \ge 0,$$

therefore takes place (12).

Moreover, if \mathcal{H} is a Loynes Z-space and the function $D(t) \in \mathcal{C}(\mathcal{H}, \mathcal{K})$, then $C(s, t) \in \mathcal{FC}(\mathcal{H}, Z)$ because

$$p\left(C(s,t)(h,k)\right) = p\left([D(t)h,D(s)k]_{\mathcal{K}}\right) \le 2q_p(D(t)h)q_p(D(s)k) \le 2M_p^1 M_p^2 \cdot q_{p_1}(h)q_{p_2}(k),$$

for any $p \in \mathcal{P}_Z$, $h, k \in \mathcal{H}$.

Similarly we can obtain that if D has values in $\mathcal{C}Q(\mathcal{H}, \mathcal{K})$, $\mathcal{C}U(\mathcal{H}, \mathcal{K})$ respectively $\mathcal{B}(\mathcal{H}, \mathcal{K})$, then associate kernel has values in $\mathcal{F}Q(\mathcal{H}, Z)$, $\mathcal{F}U(\mathcal{H}, Z)$, respectively $\mathcal{F}\mathcal{B}(\mathcal{H}, Z)$.

Remark 3.1 If C is a positive definite kernel, then the following relations take place:

(13)
$$[C(s,t)]^* = C(t,s), \quad (s,t \in \land);$$

(14)
$$C(s,s) \ge 0 \text{ for any } s \in \land;$$

equality (13) being supposed in the sense of involution from $\mathcal{F}(\mathcal{H}, Z)$ defined in (9) and (14) in the sense of positivity from inequality (12).

More, the following inequality takes place

(15)
$$p^{2}[C(t,s)(h,k)] \le 4p[C(s,s)(h,h)]p[C(t,t)(k,k)],$$

for any $p \in \mathcal{P}_Z$ and $h, k \in \mathcal{H}$.

Proof. If C is a positive definite kernel then the Z-valued kernel Γ_C pe $\Lambda_1 = \Lambda \times \mathcal{H}$ is positively defined and applying the Proposition 3.1.1 (see [2]) we obtain $\Gamma_C(\lambda, \lambda) = C(s,s)(h,h) \geq 0$ for any $\lambda = (s,h) \in \Lambda_1$ and $\Gamma_C(\lambda,\mu)^* = \Gamma_C(\mu,\lambda)$, $(\lambda,\mu \in \Lambda)$ i.e. $[C(t,s)(h,h)]^* = C(s,t)(k,h)$ or $C(s,t)^*(k,h) = C(s,t)(k,h)$ for any $h,k \in \mathcal{H}$. More, the inequality

$$p^2(\Gamma_C(\lambda,\mu)) \leq 4p(\Gamma_c(\lambda,\lambda))p(\Gamma_C(\mu,\mu)), (\lambda,\mu\in\Lambda, p\in\mathcal{P}_Z)$$

becomes

$$p^{2}(C(t,s)(h,k)) \le 4p(C(s,s)(h,h))p(C(t,t)(k,k))$$

(where
$$\lambda = (s, h), \mu = (t, k)$$
).

We also use a part of Theorem 3.1.3, see [2]. Given a Z-valued positive definite kernel $\Gamma: \Lambda \times \Lambda \to Z$, there exists a Loynes space \mathcal{H} and a function $f: \Lambda \to \mathcal{H}$ such that $\Gamma(\lambda, \mu) = [f(\lambda), f(\mu)]_{\mathcal{H}}; \quad \lambda, \mu \in \Lambda$. In addition, \mathcal{H} can be chosen to satisfy the minimality property, $\bigvee_{\lambda \in \Lambda} f(\lambda) = \mathcal{H}$.

Now the following theorem of Kolmogorov–Aronszajn type takes place. See [4] for Hilbert case.

Theorem 3.1 Let C be a $\mathcal{F}(\mathcal{H}, Z)$ -valued positive definite kernel on \wedge (\mathcal{H} being a linear space). Then, there exists a Loynes Z-space \mathcal{K} and a function $D: \wedge \to \mathcal{L}(\mathcal{H}, \mathcal{K})$ such that

(16)
$$C(s,t)(h,k) = [D(t)h, D(s)k]_{\mathcal{K}} \quad (h,k \in \mathcal{H}, s,t \in \Lambda),$$

(17)
$$\mathcal{K} = \vee \{ D(t)\mathcal{H} : t \in \wedge \}.$$

Proof. We define $\Gamma = \Gamma_C : (\wedge \times \mathcal{H}) \times (\wedge \times \mathcal{H}) \to Z$ by

(19)
$$\Gamma_C(\lambda, \mu) = C(t, s)(h, k), \text{ unde } \lambda = (s, h), \ \mu = (t, k).$$

Because

$$\sum_{j,l=1}^{n} \Gamma(\lambda_j, \lambda_l) = \sum_{j,l=1}^{n} C(s_l, s_j)(h_j, h_l) \ge 0$$

C is a $\mathcal{F}(\mathcal{H}, Z)$ -valued kernel (positive definite), it results that Γ is a Z-valued positive definite kernel. Now, applying the Theorem 3.1.3, (see [2]), for Γ , there exists a Loynes Z-space \mathcal{K} and a function $f: \wedge \times \mathcal{H} \to \mathcal{K}$ so that

(20)
$$\Gamma_C(\lambda, \mu) = [f(\lambda), f(\mu)]_{\mathcal{K}}, \quad \lambda, \mu \in \Lambda \times \mathcal{H},$$

(21)
$$\mathcal{K} = \bigvee_{\lambda \in \wedge \times \mathcal{H}} f(\lambda).$$

Since (19) and (20), considering f(t,h) with (t,h) arbitrarily in $\wedge \times \mathcal{H}$, will result:

$$[f(s,\alpha_{1}h_{1} + \alpha_{2}h_{2}), f(t,h)]_{\mathcal{K}} = \Gamma_{C}((s,\alpha_{1}h_{1} + \alpha_{2}h_{2}), (t,h)) =$$

$$= C(t,s)(\alpha_{1}h_{1} + \alpha_{2}h_{2}, h) = \alpha_{1}C(t,s)(h_{1},h) + \alpha_{2}C(t,s)(h_{2},h) =$$

$$= \alpha_{1}\Gamma_{C}((s,h_{1}),(t,h)) + \alpha_{2}\Gamma_{C}((s,h_{2}),(t,h)) = \alpha_{1}[f(s,h_{1}),f(t,h)]_{\mathcal{K}} +$$

$$+\alpha_{2}[f(s,h_{2}),f(t,h)]_{\mathcal{K}} = [\alpha_{1}f(s,h_{1}) + \alpha_{2}f(s,h_{2}),f(t,h)]_{\mathcal{K}},$$

whence applying (21) we have $f(s,\cdot) \in \mathcal{L}(\mathcal{H},\mathcal{K})$ for any $s \in \Lambda$.

We denote with D the function $\land \ni t \mapsto f(t, \cdot) \in \mathcal{L}(\mathcal{H}, \mathcal{K})$. Thus $D(t) : \mathcal{H} \to \mathcal{K}$ given of D(t)h = f(t, h) satisfies (16) from

$$C(s,t)(h,k) = [f(\lambda),f(\mu)]_{\mathcal{K}} = [f(t,h),f(s,k)]_{\mathcal{K}} = [D(t)h,D(s)k]_{\mathcal{K}},$$

where $\lambda = (t, h), \, \mu = (s, k) \in \land \times \mathcal{H}$.. Since (21) results (17):

$$\mathcal{K} = \bigvee_{\lambda \in \wedge \times \mathcal{H}} f(\lambda) = \vee \{D(t)\mathcal{H} : t \in \wedge\}.$$

Now, we separately formulate the factorization theorem for particular cases when the considered kernel C is $\mathcal{G}(\mathcal{H}, Z)$ -valued with \mathcal{G} in one of the assumptions:

Theorem 3.2 If the positive definite kernel C from previous theorem is

(i) $\mathfrak{FC}(\mathfrak{H},Z)$ -valued, denoting with $M_p(s)$ and $p_1(s)$, $p_2(s)$ the positive constant and the seminorms which appear in the condition (3) for Z-form C(s,s) $(s \in \wedge)$ associate to $p \in \mathfrak{P}_Z$, then the operators D(s) $(s \in \wedge)$ from factorization theorem belong to $\mathfrak{C}(\mathfrak{H},\mathfrak{K})$ and satisfies

$$q_p^{\mathfrak{K}}(D(s)h) \leq [M_p(s)]^{1/2} q_{p_3}^{\mathfrak{H}}(h), \quad h \in \mathfrak{H},$$

where $p_3 \in \mathcal{P}_Z$, $p_3 \geq \max\{p_1, p_2\}$,

(ii) $\mathcal{FB}(\mathcal{H}, Z)$ -valued, then $D(s) \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and

$$||D(s)|| = ||C(s,s)||^{1/2}, \quad s \in \land,$$

where ||C(s,s)|| is the norm of Z-positive form C(s,s), introduced by Theorem 2.1.

Proof. We recall that $q_p^{\mathcal{K}}(k) = \{p([k,k]_{\mathcal{K}})\}^{1/2}$ and $q_p^{\mathcal{H}}(h) = \{p([h,h]_{\mathcal{H}})\}^{1/2}$, the conclusions (i), (ii) shall be obtained by a careful examination of appropriate relations and its transcription in the seminorms language from \mathcal{H} , respectively \mathcal{K} generated by elements from \mathcal{P}_Z using gramian.

In the $\mathcal{F}(\mathcal{H}, Z)$ -valued positive definite kernels class we distinguish two interesting subclasses. First particularizing Z-forms from $\mathcal{F}(\mathcal{H}, Z)$ as in (11), we obtain the $\mathcal{L}(\mathcal{H})$ -valued positive definite kernels on an arbitrary set \wedge and then particularizing \wedge to a semigroup S (or exactly *-semigroup with or without unit) we shall obtain $\mathcal{B}(\mathcal{H}, Z)$ -valued positive definite kernels on the semigroup S.

By the general previous results, for positive definite operator kernels ($\mathcal{L}(\mathcal{H})$ -valued) on an arbitrary set \wedge , we deduce the following factorization theorem:

Theorem 3.3 (i) If \mathcal{H} is a Loynes Z-space and $T: \wedge \times \wedge \to \mathcal{L}(\mathcal{H})$ is a positive definite kernel on \wedge , then the following take place

- (a) T is $\mathcal{L}^*(\mathcal{H})$ -valued and $T(t,s)^* = T(s,t)$, $s,t \in \wedge$;
- (b) $T(s,s) \in \mathcal{L}_{+}(\mathcal{H}), s \in \wedge;$

(c) there exists a Loynes Z-space X and a function

$$D: \wedge \to \mathcal{L}^*(\mathcal{H}, \mathcal{K})$$
 such that $T(s,t) = D^*(t)D(s), s, t \in \wedge$

- (ii) If, in particular, the positive definite kernel T on \wedge is
- (a) $\mathcal{C}(\mathcal{H})$ -valued, then its values are in $\mathcal{C}(\mathcal{H}) \cap \mathcal{C}^*(\mathcal{H})$, the previous relations have a corresponding transposition and the operators D(t) from the minimal factorization are from $\mathcal{C}^*(\mathcal{H}, \mathcal{K})$;
- (b) $\mathcal{B}(\mathcal{H})$ -valued, then $T(s,t) \in \mathcal{B}^*(\mathcal{H})$, $s,t \in \wedge$, $T(s,s) \in \mathcal{B}_+(\mathcal{H})$, $s \in \wedge$ and $D(t) \in \mathcal{B}^*(\mathcal{H},\mathcal{K})$, $t \in \wedge$.

Proof. (i) Because, as such was specified for the $\mathcal{L}(\mathcal{H})$ -valued kernels, the kernel T is positively defined if the kernel $\mathcal{F}(\mathcal{H}, Z)$ -valued B_T is positively defined, according to Remark 3.1 by the relation (13) we have

$$B_{T(s,t)} = B_{T(t,s)}^*, \quad s, t \in \wedge$$

and this fact leads successively to

$$[h, T(s,t)k] = B_{T(s,t)}(h,k) = B_{T(t,s)}^*(h,k) = [B_{T(t,s)}(k,h)]^* =$$
$$= [k, T(t,s)h]^* = [T(t,s)h,k]$$

for any $h, k \in \mathcal{H}$. It results that there exists $T(t, s)^*$ and coincides with T(s, t). Hereby we have (a). (b) is a consequence of (14) and of the properties of the application (11) from the Theorem 2.1.

For (c) we apply the Theorem (of factorization) 3.1 for the kernel $B_{T(\cdot,\cdot)}$ and we obtain the relation

$$[h, T(s,t)k] = B_{T(s,t)}(h,k) = [D(t)h, D(s)k], \quad s, t \in \Lambda, \ h, k \in \mathcal{H}$$

which shows that $h \mapsto [D(t)h, D(s)k]$ admits Riesz representation also there exists $D(t)^*$ which satisfies the relation

$$T(s,t)k=D(t)^*D(s)k,\quad k\in\mathcal{H},\; s,t\in\wedge.$$

(ii) will be checked applying the Theorem 3.2

Now we can give some boundedness conditions for a Z-valued kernel on a semigroup.

Definition 3.1 Let S be an abelian semigroup and $\Gamma: S \times S \to Z$ a Z-valued kernel on S. Γ satisfies the boundedness condition, if there is a function $c: S \to [0, \infty)$ so that

(BC)
$$c(u)\Gamma - \Gamma_u$$

is positive definite for all $u \in S$, where $\Gamma_u(s,t) := \Gamma(us,ut)$.

 Γ will satisfy the "continuity" condition (CC), if for every seminorm $p \in \mathcal{P}_Z$, there exist two functions on S, $\gamma_p : S \to \mathcal{P}_Z$ and $c_p : S \to [0, \infty)$ such that

(CC)
$$p\left(\sum_{j,k=1}^{n} c_{j}\overline{c}_{k}\Gamma_{u}(s_{j},s_{k})\right) \leq c_{p}(u)\gamma_{p}(u)\left(\sum_{j,k=1}^{n} c_{j}\overline{c}_{k}\Gamma(s_{j},s_{k})\right)$$

for all $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{C}$, $s_1, \ldots, s_n, u \in S$.

Definition 3.2 If C is a $\mathcal{F}(\mathcal{H}, Z)$ -valued kernel on the semigroup S, then C satisfies (i) the boundedness condition, if there exists a function $\rho: S \to [0, \infty)$ such that

(BC)
$$\rho(u)C - C_u \text{ is positively defined } (u \in S),$$

where

$$C_u(s,t) := C(us,ut);$$

(ii) the "continuity" condition (CC), if there exist the functions $c_p: S \to [0, \infty)$ and $\gamma_p: S \to \mathcal{P}_Z$ such that takes place the condition (CC) from the Definition 3.1 with Γ_C and Γ_{C_u} instead of Γ , and Γ_u respectively.

Now, we shall focus our attention on the functions $\mathcal{F}(\mathcal{H}, Z)$ -valued of positive type on *-semigroups.

Definition 3.3 The function $\mathfrak{F}(\mathfrak{H},Z)$ -valued ϕ defined on *-semigroup S is named positively defined if the $\mathfrak{F}(\mathfrak{H},Z)$ -valued associate kernel $C_{\phi}: S \times S \to \mathfrak{F}(\mathfrak{H},Z)$ defined by $C_{\phi}(s,t) := \phi(t^*s), \ s,t \in S$ is positively defined.

We say that such of function ϕ satisfies the boundedness conditions (BC), (CC) if the associate kernel C_{ϕ} satisfies the corresponding conditions from the Definition 3.2.

Considering now the Remark 3.1, we can formulate

Consequence 3.1 Every $\mathfrak{F}(\mathfrak{H},Z)$ -valued function ϕ positive definite on *-semigroup S satisfies the relations (with involution and positivity from $\mathfrak{F}(\mathfrak{H},Z)$)

(26)
$$\phi(s^*s) \ge 0,$$

$$\phi(s)^* = \phi(s^*), \quad s \in S,$$

$$[p(\phi(t^*s))]^2 \le 4p(\phi(s^*s))p(\phi(t^*t)).$$

(27)
$$\left[p \left(\sum_{j,l=1}^{n} \phi(t_{l}^{*}s_{j})(h_{j}k_{l}) \right) \right]^{2} \leq 4p \left(\sum_{j,l=1}^{n} \phi(s_{l}^{*}s_{j})(h_{j},h_{l}) \right) p \left(\sum_{j,l=1}^{n} \phi(t_{l}^{*}t_{j})(h_{j},k_{l}) \right),$$

for any $p \in \mathcal{P}_Z$, $s, t \in S$, $\overline{s} = (s_1, \ldots, s_n) \subset S$, $\overline{t} = (t_1, \ldots, t_n) \subset S$, $\overline{h} := (h_1, \ldots, h_n)$, $\overline{k} := (k_1, \ldots, k_n) \subset \mathcal{H}$.

Remark 3.2 $\mathfrak{F}(\mathfrak{H}, Z)$ -valued kernel C_{ϕ} associate with the $\mathfrak{F}(\mathfrak{H}, \Gamma)$ -valued function ϕ on *-semigroup S, satisfies the transfer property (CT):

$$C_{\phi}(us,t) = \phi(t^*us) = \phi((u^*t)^*s) = C_{\phi}(s,u^*t); \ u,s,t \in S.$$

Now, taking into consideration the Theorem 3.1 of factorization, we deduce,

Corollary 3.1 If $\phi: S \to \mathcal{F}(\mathcal{H}, Z)$ is a positive definite function on the *-semigroup S, then there exists a Loynes Z-space \mathcal{K} and a function $D: S \to \mathcal{L}(\mathcal{H}, \mathcal{K})$ such that

(30)
$$\phi(t^*s)(h,k) = [D(t)h, D(s)k]_{\mathcal{K}}, \ h, k \in \mathcal{H}, \ s, t \in S$$

(31)
$$\mathcal{K} = \vee \{D(t)\mathcal{H}, \ t \in S\}.$$

Remark 3.3 If the function ϕ from above is $\mathfrak{G}(\mathfrak{H},Z)$ -valued, with \mathfrak{G} in one of positions \mathfrak{FC} , \mathfrak{FB} , then the function $D(\cdot)$ takes values in $\mathfrak{C}(\mathfrak{H},\mathfrak{K})$ and $\mathfrak{B}(\mathfrak{H},\mathfrak{K})$ respectively.

Using again the previous results (Theorem 3.2, Theorem 3.3), we obtain:

Remark 3.4 If the function ϕ is operatorial valued ($\mathcal{L}(\mathcal{H})$ -valued), then from the conditions of Consequence 3.1, the factorization have the following form

$$\phi(t^*s) = D(t^*)D(s), \quad (s, t \in S) \text{ with } D(s) \in \mathcal{L}(\mathcal{H}, \mathcal{K}),$$

with determination that, if we have successively $\phi(s) \in \mathcal{C}(\mathcal{H})$, $\mathcal{B}(\mathcal{H})$, then in a corresponding way

$$D(s) \in \mathcal{C}(\mathcal{H}, \mathcal{K}), \ \mathcal{B}(\mathcal{H}, \mathcal{K}), \ (s \in S).$$

References

- [1] Ciurdariu, L., On the topology of Loynes spaces, Bull. Şt. al U.P.T. Seria Matem-Fizică, Tom 49(63), 2, (2004), pp. 52-59.
- [2] Ciurdariu, L., Classes of linear operators on pseudo-Hilbert spaces and applications, Part I and II, Tipografia Universitatii de Vest Timisoara, 2006, 2008.
- [3] Gaspar, P., Analiza armonica pe spații de variabile aleatoare, Universitatea de Vest, Timișoara, 2008.
- [4] Stochel, J., Dilability of sesquilinear form-valued kernels, Ann. Polon. Math. XLVIII, 1988, 1-30.

Manuscript received: 16.06.2009 / accepted: 22.08.2009