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Abstract:  We shall formulate and study some boundedness conditions for a Z-valued
kernel on a semigroup and for Z-valued positive definite functions on x—semigroups. Then
sesquilinear Z—valued forms and F(H, Z)—valued kernels are introduced, by analogy to the
sesquilinear forms, replacing C by the admissible space in the Loynes sense Z. It is shown
that the set F(H, Z) it is a x—linear space which it is endowed with a positive cone F(H, Z)
induced by the positive cone from Z. A theorem of Kolmogorov—Aronszajn type is studied for
positive definite F(H, Z)—valued kernels.
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1. Introduction

We recall see [1], the definition of an admissible space. A locally convex space 7 is called
admissible in the Loynes sense if the following five conditions are satisfied: Z is complete;
there is a closed convex cone in Z, denoted Z,, that defines an order relation on Z (that
is 21 < 29 if 29 — 21 € Z,); there is an involution in Z, Z 3 z — z* € Z (that is z** = 2,
(az)* = @z*, (21 + 22)" = 27 + 23), such that z € Z, implies z* = z; the topology of Z is
compatible with the order (that is there exists a basis of convex solid neighbourhoods of the
origin); and any monotonously decreasing sequence in 7, is convergent.

Let Z be an admissible space in the Loynes sense. A linear topological space H is called
pre-Loynes Z —space if satisfies the following properties:

H is endowed with an Z—valued inner product (gramian), i.e. there exists an application
H x H > (h,k) — [h, k] € Z having the properties:

[h,h] > 0; [h,h] = 0 implies h = 0; [h1 + ho, h] = [h1, h] + [ho, hl; [Ah, K] = A[h, kl;
[h, k]* = [k, h] for all h,k, hi,he € H and X € €. The topology of H is the weakest locally
convex topology on H for which the application H > h — [h, h] € Z is continuous. Moreover,
if H is a complete space with this topology, then H is called Loynes Z— space.

It is known, see [1], that if p is a continuous and monotonous seminorm on Z, then
qy(h) = (p([h, h]))'/? is a continuous seminorm on K.

Also, by [1], if H is a pre-Loynes Z-space and P is a set of monotonous (increasing)
seminorms defining the topology of Z, then the topology of J is defined by the sufficient and
directed set of seminorms Q9 = {g, | p € P}.

Furthermore in [1], for every monotonous seminorm p on Z we have:
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p([h, k]) < 2q,(h) - ¢,(k) for all h, k € .

We suppose that mg,, (z) < ¢, () < Mq,,(z), (V)z € H, with p;,ps continuous and
increasing seminorms on Z and M finite, M > m > 0. Then,
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We recall by the Definition 1.1, [2], that a (pre-) Loynes Z-space H, consisting of Z—
valued functions on A, admits reproducing kernel, if there exists a positive definite kernel
[' = 'y, which satisfies the following conditions:

(a) T'(A,-) € I, for all X € A;
(b) h(A) = [A(-),T(A, )], for all A € A and h € K.

(c) the closed subspace generated by I'(),-), A € A is accessible in .

i
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2. Operatorial kernels

In this section H will be first a complex vector space, Z an admissible space in the Loynes
sense and F(H, Z) the set of Z—valued sesquilinear functions on K, i.e. the set of operators
B

Y

B:HXxH— Z,
which satisfy

(1) { B(thl + a2h2, ]i?) = CYlB(hl, ]{3) + CYQB(hQ, ]{J)

B(h, Brky + Bakz) = B,B(h, k1) + ByB(h, ko),

for any h, hj, k. kj € H; a;, 6, € C (j =1,2).

Putting Z = C, we see that the elements of F(H, C) are known as sesquilinear forms
(or functionals). In analogy with this fact, the elements B € F(H, Z) will be called Z7—
sesquiliniar forms. It is obvious that F(H, Z) is endowed in a natural way with a structure
of linear space, every element of F(H, Z) satisfying the parallelogram rule and a calculus rule
by diagonally values

(2) B(h+k,h+k)+ B(h—k,h—k)=2[B(h,h) + B(k, k)]

3
B(h,k)y=>_#B(h+k h+i'k)
§=0
with i—imaginary unit A, k € K.
Often we will suppose that H is endowed with a gramian such that H is a Loynes Z—
space. In this case we will say that B is continuous if for every seminorm p € P, there exists
a constant M, > 0 and two seminorms p;, ps € Pz so that

(3) p(B(h,k)) < Mprl(m%z (k> h,k € H.

Following, we will name the set of this Z—sesquilinear forms by FC(H, Z).
Particularly we will say that Z-form B € F(H, Z) is ¢-bounded and we shall denote this
by B € FQ(H, Z), if for any p € Py, there exists a constant M, > 0 such that

(4) p(B(h, k) < Mygy(h)gp(k), h,k € H.

If above we can choose A, independent of p € P, then we shall say that B is universally
bounded and we shall denote B € FU(H, Z).

It is obvious that the above subclasses are linear subspaces in F(H, Z) and satisfy the
inclusions

(5) FU(H, Z) C FQ(H, Z) C FC(K, Z).

It was noticed that (4) take places if B satisfies a “ ¢—boundedness condition” concerning
to the gramian, i.e. for p € P, there exists N, > 0 such that

(6) p(B(h, k) = Nypp([h, K]), D,k € 3.

:

Indeed, applying in the right side the inequality p([h, k]) < 2¢,(h) - ¢,(k) we shall obtain
(4) with M, = 2N,,. A similar fact take places if we impose a “universally boundedness ”
condition concerning to the gramian.

We shall say that Z— sesquilinear form B is positive, if satisfies

(7) B(h,h) 20, heX
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and symmetrical, if
(8) B(h, k) = [B(k,h)]", h, ke H.

Moreover, in F(H, Z) we can introduce an involution using the involution of Z hereby:
9) B*(h,k) :=[B(k,h)]*, h,ke 3.

Indeed, it is easy to see that B* thus defined is also a Z— sesquilinear form, and the
application
FH,Z)>5B— B € FH, Z2)

is an involution, i.e. satisfies
B** — B

(OélBl + OZQBQ)* = ale + @QB;‘,

for any B, By, By € F(H, Z) and oy, € C.

In this context, Z—positive forms are self-adjoint elements and the symmetrical forms are
exactly the self-adjoint elements from F(H, Z). We use now for the first and the second class
the notations: F,(H, Z), respectively F,(H, 7).

An another particular subclass in F(H, Z) is the subclass FB(H, Z) consisting of those
Z—form B for which there exists a constant Mg > 0, such that B(h,h) < pgl[h, h], h € H.
Because the last relation implies B(h, h) = B(h,h)* and —pglh, h] < B(h, h) it results that
these Z—forms are symmetrically and for its it has sense in analogy with the case of bounded
operators, to consider the borders

mp :=sup{p > 0:—ulh,h] < B(h,h), h € H}

3

and
Mp :=inf{r > 0: B(h,h) <v[h,h|, h € H},

3

which are optimally with the property

mplh, h] < B(h,h) < Mglh,h], h e H.

3

A modality to obtain Z—sesquilinear forms on a Loynes Z—space JH is given, as in the case

of Hilbert spaces, using operators and inner product.
Indeed if T' € L(H), then defining

(10) Br(h k) := [h, Tk (hk € %)

we shall obtain that By € F(H, Z).
It is easy to observe that the application

(11) L(H) 5T — By € F(H, 2)

is linear and one-to-one.
If T € L*(K) then the easy calculus

3 3

Bi(h, k) = [Br(k, W)]* = [k, Th]* = [Th, k] = [h, T*k] = Br-(h, k), (h,k € )

shows that the restriction to L*(H) of T'— By is an involution.
It is also easy to notice that T' € L*(H), if and only if B; = Bg for a certain S € L(H).
Indeed, the relation B} = Bg is equivalent with [T'h, k] = [h, Sk], for h, k € H i.e. it is
equivalent with S = T*.
More, this observation allows us to establish that the application (11) isn’t generally onto.
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Indeed, if T € L(H) \ L*(H), then doesn’t exist any S € L(K) such that Bg = By,
because otherwise we should have S = T*.

Of course we can refer also on the restrictions of the application (11). For example if
T € C(H), by

(Th) < Mygy,(h),  (h € H)

:

we have successively
p(Br(h, k) = p([h, Tk]) = 2q,(h)q,(Tk) = 2Myq,(h) gy, (k). .k € K,

which means By € FC(H, Z). By the same reasoning on T' € CQ(H), having above py = p,
we will infer that By satisfies (4) where M, is replaced with 2A14,, i.e. Br € FQ(H, Z).
By analogy: T € CU(H) = Br € FU(H, Z) and
T e L.{.(j‘() = Br € 32’_‘_(:}(7 Z) T € Lh(j{) = Br € th(f}(, Z)

3

If we analyze also the boundedness relations for the forms from FB(H, Z), we easily
observe using the inequality from Consequence 1.1.1 (see [2]) or [1], that T € B, (H) implies
Br € FB(H, Z) and more, its borders coincide: mpy = mp,, My = Mp,..

By analogy with the expression of norm of elements T € B, (H)

[T = max{|mzl, [Mr[}, T € Ba(H)

is clear that FB(H, Z) becomes norm space with
||B]| := max{|mg|, |Mg|}, B € FB(H, Z).
Rejoining the above results, we can enunciate:

Theorem 2.1 (i) Given a (complez) linear space H and a locally conver space Z admissible
in the Loynes sense, the set F(H, Z) of Z— sesquilinear forms on 3 is a x—linear space, the
involution is defined by (9) and is endowed with a positive cone F(H,Z) induced of the
positive cone in Z by (7).

Besides, every 7 -sesquilinear forms satisfies the rules (2).

(ii) If H is a Loynes Z-space, then there exists a natural embedding of L(H) in F(H, Z)
given of (10) and (11) with the properties:

(a) for T € L(K) we have that T € L*(K) if and only if B, = Bg for a S € L(H), case
when S =T%;

(b) generally it isn’t onto;

(c) its restriction to L*(H) keeping the involution, consequently the positive and symmetrical
elements;

(d) Its restrictions range to the subspaces C(H), CQ(H), CU(H), Bu(H) of L(K) are con-
tents in FC(H, Z), respectively FQ(H, Z), FU(H, Z), FB(H, Z) above definite.

In particular the elements from FB(H, Z) are symmetrical.
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3. F(H, Z)—valued kernels

In this section we shall consider the kernels F(H, Z)—valued on an arbitrary set A and for
this we shall prove a typical factorization theorem. But, first we shall give an example of
such kernel.

Let H be a linear space, Z—an admissible space, A an arbitrary set and F(H, Z) the space
of Z—sesquilinear forms on H which is Z-valued.

A F(H, Z)—valued kernel on A, C': A X A = F(H, Z) is called positively defined if,

(12) > " C(sj,50)(hy, hy) > 0 for any n € N, s1,..., 5, € A

Jl=1

and hq,...,h, € H. It is obvious that this fact is equivalent with the fact that the associate
Z-valued kernel T'c on Ay = A x H defined by I'c(A, p) = C(t,s)(h, k), where A = (s, h),
w = (t, k) is positively defined.

Example 3.1 Let H be a linear space, X a Loynes Z-space and a family of linear operators
defined by
D:A—= L(H,XK).

Then, it is easy to see that the kernel C : A x A — F(H, Z) defined by C(s,t)(h, k) :=
[D(t)h, D(s)k|x is F(H, Z)—valued and positively defined.
Indeed ,

n

Z C(s5, 81) (i, hy) = Z[D(sl)hbD(Sj)hj]K = ZD(Sz)hz, ZD(Sj)hj 20,

=1 =1 x

therefore takes place (12).

Moreover, if H is a Loynes Z-space and the function D(t) € C(H,XK), then C(s,t) €
FC(H, Z) because

p(C(s,8)(h, k) = p ([D(t)h, D(s)k]s) < 2¢,(D(t)h)ay(D(s)k) < 2M, My - g, (h)ap, (K),
for any p € Py, h, k € H.

Similarly we can obtain that if D has values in CQ (¥, X), CU(H, K) respectively B(H, K)
then associate kernel has values in FQ(H, Z), FU(H, Z), respectively FB(H, Z).

3

i

Remark 3.1 If C' is a positive definite kernel, then the following relations take place:

(13) [C(s,t)]" =C(t,s), (s,t€AN);

i

(14) C(s,s) > 0 for any s € A;

equality (13) being supposed in the sense of involution from F(H, Z) defined in (9) and (14)
in the sense of positivity from inequality (12).

More, the following inequality takes place
(15) P*[C(t, 8)(h, k)] < 4p[C (s, 5)(h, 1) ]p[C(t, 1) (k, k)]

3

for any p € P, and h, k € H.
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Proof. If C is a positive definite kernel then the Z-valued kernel I'c pe Ay = A X H
is positively defined and applying the Proposition 3.1.1 (see [2]) we obtain I'c(A,A) =
C(s,s)(h,h) = 0 for any A = (s,h) € Ay and Tec(A p)* = Te(u, A), (A, p € A) ie.
[C(t, s)(h, h)]* = C(s,t)(k,h) or C(s,t)*(k,h) = C(s,t)(k,h) for any h,k € H. More, the
inequality

P (Ce(A 1) £ 4p(Ce(A\ )p(Lo(p, 1)), (A p €A, p € Py)

becomes
P*(C(t,5)(h, k) < 4p(C(s, 5)(h, h))p(C(t, 1) (k, k)

(where A\ = (s, h), p = (¢, k)). O

We also use a part of Theorem 3.1.3, see [2]. Given a Z—valued positive definite kernel
I' : Ax A — Z, there exists a Loynes space H and a function f : A — JH such that
T p) = [fO), f()]se; A, € Al In addition, H can be chosen to satisfy the minimality

property, \/ f(A) = 3.
AEA

Now the following theorem of Kolmogorov—Aronszajn type takes place. See [4] for Hilbert
case.

Theorem 3.1 Let C' be a F(H, Z)-valued positive definite kernel on A (H being a linear
space). Then, there exists a Loynes Z—space K and a function D : N — L(H,K) such that

(16) C(s,1)(h, k) = [D()h, D(s)k]se  (h,k € K, s,t € N),

(17) K =VI{DH)IH: t € A},

Proof. We define ' =T¢ : (A X H) x (A x H) = Z by

(19) Le(A u) =C(t,s)(h, k), unde A = (s, h), u=(t,k).

Because . .,
> T A) =Y Clstys)(hyy ha) 2 0
Jl=1 Jl=1
C is a F(H, Z)—valued kernel (positive definite), it results that T' is a Z—valued positive

3

definite kernel. Now, applying the Theorem 3.1.3; (see [2]), for T', there exists a Loynes
Z—space X and a function f: A x H — X so that

(20) Fe(h ) =[f(N), f(Wlx, A penxH,
(21) K=\ .

Since (19) and (20), considering f(¢, h) with (¢, h) arbitrarily in A x H, will result:
[f(s,a10h1 4+ ashs), f(t, h)]xc = Le((s, anht + aghs), (t, h)) =
= C(t, S) (Oélhl + Oéghg, h) == OqC(t, S) (hl, h) + OZQC(t, S)(hg, h) =
= O[lrc'((S, hl)? (t7 h)) + aQFC((Sa hZ): (tv h)) = Oél[f(S, hl)a f(ta h)]ﬂ(+

+a2[f(57 h2)7 f(tv h)]fK = [alf(87 hl) + an(S7 h2)7 f(t7 h)bﬁ
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whence applying (21) we have f(s,-) € L(H,K) for any s € A.
We denote with D the function A 3 ¢t — f(¢,-) € L(H,K). Thus D(t) : H — K given of
D(t)h = f(t, h) satisfies (16) from

Cls, t)(h, k) = [F(N), F()lsc = [F(t, h), f (s, k)]s = [D(8)h, D(s)k]xc,
where A = (t,h), p = (s,k) € A x H.. Since (21) results (17):
K=\ f)=V{D®H:ten}
O

Now, we separately formulate the factorization theorem for particular cases when the
considered kernel C' is G(H, Z)—valued with G in one of the assumptions:

FC, FB.

Theorem 3.2 If the positive definite kernel C' from previous theorem is

(1) FC(H, Z)—valued, denoting with M,(s) and pi(s), p2(s) the positive constant and the
seminorms which appear in the condition (3) for Z-form C(s,s) (s € A) associate to
p € Py, then the operators D(s) (s € A) from factorization theorem belong to C(H, K)
and satisfies
(D)) < L), he

where p3 € Pz, p3 = max{py, p2},
(il) FB(H, Z)-valued, then D(s) € B(H,XK) and
ID(s)| = IC(s, 8)[[V2, s € A
where ||C (s, s)|| is the norm of Z—positive form C(s, s), introduced by Theorem 2.1.

Proof. We recall that ¢ (k) = {p([k, kls) 1% and g (h) = {p ([, hls¢)}'/%, the conclusions
(i), (ii) shall be obtained by a careful examination of appropriate relations and its transcrip-
tion in the seminorms language from H, respectively X generated by elements from P, using
gramian. O

In the F(H, Z)—valued positive definite kernels class we distinguish two interesting sub-
classes. First particularizing Z—forms from F(H, Z) as in (11), we obtain the L(JH)—valued
positive definite kernels on an arbitrary set A and then particularizing A to a semigroup S (or
exactly x—semigroup with or without unit) we shall obtain B(H, Z)—valued positive definite
kernels on the semigroup S.

By the general previous results, for positive definite operator kernels (L(H)—valued) on
an arbitrary set A, we deduce the following factorization theorem:

Theorem 3.3 (i) If H is a Loynes Z-space and T : A x N — L(H) is a positive definite
kernel on A, then the following take place
(a) T is L*(H)-valued and T(t,s)* =T(s,t), s,t € A;

(b) T(s,s) € L4 (H), s € A;
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(c) there exists a Loynes Z-space K and a function

D : AN — LYH,K) such that T(s,t) = D*(t)D(s), s,t € A

(i) If, in particular, the positive definite kernel T on A is

(a) C(H)-valued, then its values are in C(H) N C*(H), the previous relations have a corre-
sponding transposition and the operators D(t) from the minimal factorization are from
C*(H, X);

(b) B(H)-valued, then T(s,t) € B*(H), s,t € A, T(s,s) € By(H), s € A and D(t) €
B*(H,K), t € A.

Proof. (i) Because, as such was specified for the L(JH)-valued kernels, the kernel T' is posi-
tively defined if the kernel F(H, Z)—valued Br is positively defined, according to Remark 3.1
by the relation (13) we have

Bren = B;“(t,s)'/ s,t €N

and this fact leads successively to
[h, T(s,t)k] = Br(syy(h, k) = Brq.s(h, k) = [Brus (k, h)]" =

= [k, T(t,s)h|* = [T(t,s)h, k]

for any h,k € H. Tt results that there exists T'(¢, s)* and coincides with T'(s,t). Hereby we
have (a). (b) is a consequence of (14) and of the properties of the application (11) from the
Theorem 2.1.

For (c) we apply the Theorem (of factorization) 3.1 for the kernel Br(. .y and we obtain
the relation

[h, T(s,t)k] = Bresyy(h, k) = [D(£)h, D(s)K], s,t € A, b,k € K

which shows that h — [D(¢)h, D(s)k] admits Riesz representation also there exists D(t)*
which satisfies the relation

T(s,t)k = D(t)*D(s)k, ke XH, s,teA.
(ii) will be checked applying the Theorem 3.2 O

Now we can give some boundedness conditions for a Z—valued kernel on a semigroup.

Definition 3.1 Let S be an abelian semigroup and T : S x S — 7 a Z-valued kernel on
S. T satisfies the boundedness condition, if there is a function ¢ : S — [0,00) so that

(BC) c(u)I' =T,

is positive definite for all u € S, where I',(s,t) = I"(us, ut).
T will satisfy the “continuity” condition (CC), if for every seminorm p € Py, there exist
two functions on S, v, : S — P, and ¢, : S — [0, 00) such that

(€O b (Z 0I5, Sk)) < cp(u)1p(w) (Z CjEkF(Sjvsk)>

foralln e N, ¢,...,¢c, € C, s1,...,8,,u €S.
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Definition 3.2 If C is a F(H, Z)—valued kernel on the semigroup S, then C' satisfies
(i) the boundedness condition, if there exists a function
p:S —[0,00) such that

(BC) p(u)C — C,, is positively defined (u € S)

where

Cu(s,t) := C(us,ut);

(ii) the “continuity” condition (CC), if there exist the functions ¢, : S — [0,00) and v, : S —
Pz such that takes place the condition (CC) from the Definition 3.1 with T and T¢, instead
of I', and T',, respectively.

Now, we shall focus our attention on the functions F(H, Z)—valued of positive type on
*—Semigroups.

Definition 3.3 The function F(H, Z)-valued ¢ defined on x—semigroup S is named pos-
itively defined if the F(H, Z)-valued associate kernel Cy : S x S — F(H,Z) defined by
Cy(s,t) = ¢(t*s), s,t € S is positively defined.

We say that such of function ¢ satisfies the boundedness conditions (BC), (CC) if the

3

associate kernel Cy satisfies the corresponding conditions from the Definition 3.2.

Considering now the Remark 3.1, we can formulate

Consequence 3.1 Fvery F(H, Z)-valued function ¢ positive definite on *-semigroup S
satisfies the relations (with involution and positivity from F(H, Z))

(26) ¢(s*s) 2 0,

¢(s)" = p(s"), s€5,
[ (6(t75))]" < 4p(8(s5))p(d(171)).

(27) [p (Z ¢<t;‘sj><hjkl>)] <4p (Z o (s755) (N, hz))P(Z o(t;t;) (hy, kﬂ) 7

Ji=1 Jil=1 o l=1

foranyp € Py, s, € 5,5 = (s1,...,8,) C S, T = (tr,...,t,) TS, h:= (h,..., ha),
Fi= (kt,. .. k) C .

Remark 3.2 F(H, Z)-valued kernel Cy associate with the F(H, ") -valued function ¢ on
x—semigroup S, satisfies the transfer property (CT):

Cy(us,t) = ¢(t"us) = ¢ ((u't)"s) = Cy(s,u"t); u,s,t € S.

Now, taking into consideration the Theorem 3.1 of factorization, we deduce,

Corollary 3.1 If ¢ : S — F(H, Z) is a positive definite function on the x—semigroup S,
then there erxists a Loynes Z—space X and a function D : S — L(H,K) such that

(30) 6(+°5)(h, k) = [D()h, D(s)klxc, h.k €, s,te S
233



JOURNAL OF SCIENCE AND ARTS

(31) K = V{D)K, t € S).

Remark 3.3 If the function ¢ from above is G(H, Z)—valued, with G in one of positions
FC, FB, then the function D(-) takes values in C(H,XK) and B(H,XK) respectively.
Using again the previous results (Theorem 3.2, Theorem 3.3), we obtain:

Remark 3.4 If the function ¢ is operatorial valued (L(H)—valued), then from the condi-
tions of Consequence 3.1, the factorization have the following form

é(t*s) = D(t*)D(s), (s,t € S) with D(s) € L(H,K),

with determination that, if we have successively ¢(s) € C(H), B(H), then in a corresponding
way
D(s) € C(H,X), B(H,X)

3 3

(s € 9).
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