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Abstract:  This paper is an introduction in the theory of the category of right comodules
over the path coalgebra kQ). Remind that the presentation is a didactic one. So we start
with the construction of path coalgebra and then, using coalgebra representations, we find an
equivalence from the category of rational representations of @) to the category of right k@) —
comodules. Finally, we characterize a localized subcoalgebra of kQ).
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1 Preliminary notions.

Definition 1.1. Let £ be a field. A k& — coalgebra is a k — vector space C' endowed with
two linear applications: A: C - C®C and e : C — k such that AR I)o A=I & A)o A
and (I ®¢e)o A =(e®I)oA. We denote a coalgebra C by (C, A, ).

Definition 1.2. Let (C,A,¢) be a coalgebra over k. A k — vector space M together a
linear map p: M — M ® C is called a right C — comodule if (Iny @ A)op = (p® Ic) o p and
(Iny ® ) op =1, where i : M — M & k is the canonical isomorphism. In the same way we
can define a left C' — comodule N with the structure map A : N — C & N (see [3])

We note with M®the category of right C' — comodules and with “M the category of left
C' — comodules (much more details in [3]).

Definition 1.3. A guiver is an oriented graph @ = (Qo, Q1), where @ is the set of
vertices and ()qis the set of arrows.

Let s : @1 — Qo and t : Q1 — Qo where s(a) = i and t(«o) = j, for every arrow
a : i — j from the vertex 7 to 7 . A path p in () is a sequence p = «,...cx; in such way that
t(e;) = s{egq), i=1,..,n—1.

We denote with P the set of all paths in ) and for every ¢ € @)y, the set of all paths
starting from ¢ with P(4,7). A trivial path in @, denoted by e;, is a path with the property
t(e;) = s(e;) = i. For every nontrivial path p = «,...cc; we define s(p) = s(;) and ¢(p) =
t(a,)-

A nontrivial path is called an oriented cycle if s(p) = t(p).

The length of a path p, denoted by|p|, is the number of arrows which compose it. For
completeness we consider vertices as trivial paths or paths of length zero. The concatenations
of paths: for a path « from ¢ to j and another path S from j to [ , their product or
concatenation is the path from ¢ to [ denoted by So.

Example 1.1. Let (P, <) be a partial ordered set (poset for short). Suppose that
P is local finite, means that for every elements z,y € P such that x < y in P, the set
[z,y] ={z € Plx <z <y} is finite.

Starting with the poset (P, <) we construct the quiver Q = (Qy, Q1) in the following way:
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T =y, v <y

. It means that
0, else

- Qo = P, and for every z,y € Plet a: z — y, a(z) = {

exist an arrow from z to y only if z < y in P;

- (01 is the set of arrows between vertices of ().

Next, let Q@ = (Qo, Q1) be a quiver. We can construct a k — vector space, denoted kQ,
over k of base Q. We obtain kQ = {>_7  a;p; |a; € k, p;path in Q, n € N*}.

On this vector space we define a coalgebra structure:

AkQ 5 EQRKQAP) = Y. pi@p

pP=p1p2
£ kQ — k,ﬁ(p) = (5‘1,‘,0

where if p = ay...a5104...1, then p; = ay...a51 and py = ag...qq, for 1 < s <t and
where |p| = t is the length of the path p.

The triplet (kQ, A, ) is a coalgebra (the proof is in [5]-[6]) and it is called the path
coalgebra associated to the quiver Q = (Qq, Q1))

Definition 1.4. Let k£ be a commutative field.

A representation of a quiver @ = (Qy, (J1)consist in:

1. to associate to every vertex from (Qpand every arrow from (1, a linear application from
the vector space associated to the origin of the arrow considered, to the vector space
associated to the vertex of the same arrow.

More precisely, a representation V of Q = (Qo, Q1) is a set (collection)

VilieQo}

of k — vector spaces of finite dimension together with a set (collection)

{Va : V;(a) — W(a) |a € Ql}

of k — linear applications.

The dimension of V is the map dy : Qo — Z>¢, dy (i) = dimV;, Vi € Q.

If V and W are two representations of the same quiver () , then amap ¢ : V — W is a
set of k — linear applications

{¢Z‘/;—>WZ|Z€Q0}
such that

Waws(a) - th(a)va ) Va € Ql-

By composing of maps V,, we obtain a linear map V,, which corresponds to a nontrivial
path p.

The category of the representations of a quiver @ we denote by rep(Q). Next we present
in which way this category is equivalent to the category of comodules over path coalgebra
kQ).

For a representation V' = (V;, Va);c0,.aco, ©f @ and for a path p€P , the linear application
V), is:

Iv. , if p=e; forsome i € Qg

Vo=< Vo, if p=aforsome e )
Vo Vo 1Vay » Uf D= 0anau_1..aq0 , wherea;arearrows, 1 =1,n
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Definition 1.5. A representation V of the quiver @ is called rational if for every i € Qq
and for every v € V;, the set {p € P(i,7) |V,(v) # 0} is finite.
Examples of representations 1.2.

1. A representations of the quiver

associated to the poset (P = {1,2},<), is a collection of two vector spaces of finite
dimention V7, V5 together a linear application V, : Vi — V5.

2. A representation of Jordan quiver

associated to the poset (P = {1}, =) is a vector space V; together a map V, : V; — V.

3. A representation of star-quiver

is a collection of vector spaces {V1, Vo, V3, Vi, Vs, Vg } together with five linear applications
{Vo, : Vi—= Vs ‘ i =1,5}. If all these applications are injective ones we can consider that this
representation is in fact a representation of vector subspaces.

2 Path coalgebra k@) and right comodules over kQ

Let V be a rational representation of (). We define on the vector space M := % Vi a
1€
structure of k(@) — right comodule by A, i

Am(v) =2 epin Volv) @ p, for every i € Qy and v € V.

Because the representation is rational, the sum above is finite.

Proposition 2.1. Let M be a k — vector space and ¢ : P x M — M a linear application
in the second argument. Let ¢,(m) = ¢(p, m), for any (p,m) € P x M. We define the map
Ay M — M&EQ, by Ay(m) = ZpEP op(m) ® p, for m € M. We obtain that the pair
(M, Ap) is a right £@Q — comodule only if the following conditions are satisfied:

(1) For every m € M and every py,ps € P,

_ ) Py (m) , if pep1 #0

¢P2 (¢P1 (m)) - { 0 , Zf PP = 0 and

(2) Forevery m € M, m =}, o ¢, (m).

Proof. It is enough to verify that the condition (1) is equivalent to (In; ® A’) o Ay =
(A @ Irg) o Ay and, also, that the (2) condition is equivalent to (Iy; ® ') 0 Ay = ip,
where 7,,1s the canonical isomorphism ¢y, : M — M Q k.

(M, Ayy) is aright k@ — comodule if the diagrams from the definition 2 are commutative.

So, for every m from M , we have

((An © ko) © Anr) (m) = (Awr & Irg) (Anr(m)) =

= (A ® Ikg) (Z Bp (M0 ®p2> Z Ap (Pp,(m)) @ po =

2€P p2EP

= Z (Z ¢p1 ¢p2 ®p1> ®P2

p2cP \p1cP

and also,

(I @ A o Ay) (m) = (I @A) (A (m)) = (I @ A) (Z% ) —

peP
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=S 6 m) © A = 3 by (Zm@wz) S5 bmenon

pEP pcP P=p1p2 pCP p=p1p2

From above we obtain (I)y & A") o Ay (m) = (A ® Iig) 0 Ap(m), for every m from U,
then (1) is true.
Much more, ((I3r ® €') 0 Apr) (m) = ipr(m), Vm € Mem = (I ® ') o Ay) (m) =

=(Iu®e) (Z% ) :Z¢p(m) Z% ®6\p\0_2¢€1 =

peP peP peP 1€Q0

= ico, Pe; (M), then (2) in true.
Theorem 2.1. The pair | M := & V, AM> is a right k() — comodule.
1€Q0

The proof result from the above proposition.

Let ®(V) =(M, Ayr), the functor ® : Rat — rep(Q) — Mod*® from the category of
rational representations of the quiver @ to the category of right k@) — comodules.

Conversely, let kQy be the vector space of base {e;|i € Qo}. We define a £ — linear
application 7 : kQ) — kQq by 7(p) = €'(p)eyy), for every path p €P. Let consider now a right
k@ — comodule M = (M, Ay;). We define a representation V' = (Viava)z‘er,ate of @, in
the following way:

1. For every i € Qq, let V; = {m € M |(I ® 1) o Ay (m) = m & e; }, which is naturally a
k vector space because of the linearity of the maps which appear in V;;

2. For every m € M we can write in a unique way:

= Z¢p(m ®

peP

where ¢,(m) € M, because P is a base of kQ).

The uniqueness of ¢,(m), p €P make possible the definition of the map V, : V; — Vj
by Va(m) = ¢o(m) , m € V; where Vo : i — j is an arrow from @. Also, the uniqueness of
¢,(m) demonstrate the linearity of V.

Now let’s prove that ¢, (V;) C V}.

Proposition 2.2. For every i € (Jy the following are true:

(Vi ={m e M|m = ¢, (m)}; (1)
o (Vi) CV;, where a: i — j is arrow in Q;
x(m) =0 only if only p €P(i,7);
7/( ) ¢€1’,(m)7 then m = d)&(m)

[ = Qi Cp_1...cx; fOr some arrowsay, ag, ..., &y, (n > 0), then V,(m) = ¢,(m) and

2

S S

)
3)
4)
5)

AN TN TN N
@S

Van Van 1° ( ) ¢N( )
Proof. (1) For every m € M we have:

(I @m) Ay(m) = ¢u(m) = ¢ (m)®e;

HeEP J€Qo
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Then, V; = {m € M |¢.,(m) = 6;;m} C {m e M|m = ¢.,(m)}.

(2) For every m € V}, we have ¢, (¢o(m)) = de,o(m) = do(m).

We obtain ¢,(m) € V;.

The relations (3), (4) and (5) are immediately.

Proposition 2.2. Let V be a representation of ) obtained from a right k() — comodule
M as above. Then the following are true:

1. V is a rational representation.

2. M = & V,, as a sum of vector spaces.
1€Q0

3. For every ¢ € (Jg and v € V; we have

Au) = Y Ve

HEP(i,7)

The proof follows immediately from the above lemmas.

If we denote with W(M) := V, we obtain a functor ¥ : Mod*® — Rat — rep(Q) which
is equivalent and quasi-inverse to ® : Rat — rep(Q) — Mod*?, means that the category of
rational representations of the quiver @) is equivalent to the category of right £@ — comodules.

Example 2.1.

Let @ be the quiver ({1,2},{a;|i € N},t,s) where s(e;) = 1 and t(;) = 2 for every
i € N. Now, we consider the representation V with V} = £ = V5 and V,, = Id, Vi € N.
Then V is 2-dimensional, but is not rational. We observe that any representation of the
sub-quiver Q™ := ({1,2},{o;]i=1,..,n},t,5), n € N fixed, of @ is rational, then they
are considered as k() — comodules.

3 Localization in the path coalgebra kQ

3.1 Some preliminaries.

In the following paragraph we consider that the reader is familiarized with notions from the
theory of categories (see also [6]). Recall (from [4]-[5]) that if C is an abelian category, then a
subcategory A of C is dense if and only if from every exact sequence 0 - X' — X — X" — 0
of objects from C, we have that X €A if and only if X’ and X" are from A. For every dense
subcategory A of C exist an abelian category C /A and an exact functor T : C — C /A such
that T(X) =0, VX €A and with the universal property: for every functor H : C — C’ such
that H(X) =0, VX €A, does exist an unique functor H : C / A— C’ such that HoT = H.
The category C /A is called the factorization category of C with respect to the subcategory
A.

Also, a dense subcategory A of C is called localizing if the functor 7 : C — C /A has a
right adjunct S : C /A — C , in this case S is called the section functor of T .

In the particular case in which C is a Grothendieck category (ex. the category of right
comodules of a coalgebra C, M®), a dense subcategory A of C is localizing if and only if it is
closed under direct sums.

Let C and D be two coalgebras and M € M® with the structure map py : M — M & C
and N € “M with the structure map Ay : N = C ® N. The cotensor product M ?¢N is the
kernel of the linear application

pp@N-—M&\:M&N > MgCgN.

222



JOURNAL OF SCIENCE AND ARTS

In [1] is given the next theorem: If A is a localizing subcategory of M“and X is a injectve
quasi-finite right C' comodule such that A = Ay and if we consider the injective Morita-
Takeuchi context (D,C, XY, f, g) defined by X as in [1], then the functors

T =(-)?2cY : M= MP and § = (-)?7pX : MP — M¢

define a localization of MY with respect to the localizing subcategory A. In particular
M/ A is equivalent to M?.

3.2 Localization in the path coalgebra kQ

Now let e € kEQ* be an idempotent element. Then e(kQ)e can be endowed with a coalgebra
structure given by:

Ackgle(epe) =Y epre ® epre and e.k0)e(epe) = e(p)

where A(p) = Y o—pipy P1 ® P2, for every p € kQ.

Since (kQ)e is a quasi-finite injective right £Q — comodule, we can consider the injective
Morita-Takeuchi context (e(kQ)e, kQ, (kQ)e, e(kQ), f,g) as in [1], then the functors

T = (-)?koe(kQ) : MF@— MeE@e and S = (-)? 101 (kQ)e : MeE@e—y MEQ

define a localization of M*? with respect to the localizing subcategory A,= Ker T = {M
EMkQ/M7kQ€(kQ)=O}Z{MEMkQ/PMZO}

Much more, for any idempotent e € kQ* and any vertex x € (), we have either e(z) = 0 or
e(z) = 1. But two idempotent elements e, f € kQ* are equivalent if and only if eg, = fg, -
and so we have that every localizing subcategory of M*¥is associated to an idempotent
element e € kQ* such that e(p) = 0 for any path p with length |p| > 0.

In [1], for any such idempotent element e it is defined a new quiver Q¢ as:

- Q5 ={z € Qv/e(z) = 1}

- (Y5 is the set of paths p = a,...cr; in @ such that e(s(p)) = e(t(p)) = 1 and e(s(e;)) =
0, Vi = 2,n.

Theorem 3.1. The localized coalgebra e(kQ)e is isomorphic with the path coalgebra of
the quiver Q°.

Consequence 3.2. The functor T = (-)?xge(kQ) : MF9— M¢*@¢can be regarded as a
functor from Rat — rep(Q) to Rat — rep(Q°).
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