PATH COALGEBRA kQ AND RIGHT COMODULES OVER kQ

GEORGIANA VELICU

Valahia University of Târgovişte, Bd. Unirii No 18, 130082, Târgovişte, Romania, e-mail: neacsugeorgiana@yahoo.com

Abstract: This paper is an introduction in the theory of the category of right comodules over the path coalgebra kQ. Remind that the presentation is a didactic one. So we start with the construction of path coalgebra and then, using coalgebra representations, we find an equivalence from the category of rational representations of Q to the category of right kQ – comodules. Finally, we characterize a localized subcoalgebra of kQ.

Keywords: path coalgebra, right comodules over kQ, abelian category

1 Preliminary notions.

Definition 1.1. Let k be a field. A k – coalgebra is a k – vector space C endowed with two linear applications: $\Delta : C \to C \otimes C$ and $\varepsilon : C \to k$ such that $(\Delta \otimes I) \circ \Delta = (I \otimes \Delta) \circ \Delta$ and $(I \otimes \varepsilon) \circ \Delta = (\varepsilon \otimes I) \circ \Delta$. We denote a coalgebra C by (C, Δ, ε) .

Definition 1.2. Let (C, Δ, ε) be a coalgebra over k. A k – vector space M together a linear map $\rho: M \to M \otimes C$ is called a right C – comodule if $(I_M \otimes \Delta) \circ \rho = (\rho \otimes I_C) \circ \rho$ and $(I_M \otimes \varepsilon) \circ \rho = i$, where $i: M \to M \otimes k$ is the canonical isomorphism. In the same way we can define a left C – comodule N with the structure map $\lambda: N \to C \otimes N$ (see [3])

We note with M^C the category of right C – comodules and with C^C – the category of left C – comodules (much more details in [3]).

Definition 1.3. A quiver is an oriented graph $Q = (Q_0, Q_1)$, where Q_0 is the set of vertices and Q_1 is the set of arrows.

Let $s: Q_1 \to Q_0$ and $t: Q_1 \to Q_0$ where $s(\alpha) = i$ and $t(\alpha) = j$, for every arrow $\alpha: i \to j$ from the vertex i to j. A path p in Q is a sequence $p = \alpha_n...\alpha_1$ in such way that $t(\alpha_i) = s(\alpha_{i+1}), i = 1, ..., n-1$.

We denote with **P** the set of all paths in Q and for every $i \in Q_0$, the set of all paths starting from i with P(i,?). A trivial path in Q, denoted by e_i , is a path with the property $t(e_i) = s(e_i) = i$. For every nontrivial path $p = \alpha_n...\alpha_1$ we define $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

A nontrivial path is called an oriented cycle if s(p) = t(p).

The length of a path p, denoted by |p|, is the number of arrows which compose it. For completeness we consider vertices as trivial paths or paths of length zero. The concatenations of paths: for a path α from i to j and another path β from j to l, their product or concatenation is the path from i to l denoted by $\beta\alpha$.

Example 1.1. Let (P, \leq) be a partial ordered set (poset for short). Suppose that P is local finite, means that for every elements $x, y \in P$ such that $x \leq y$ in P, the set $[x, y] = \{z \in P | x \leq z \leq y\}$ is finite.

Starting with the poset (P, \leq) we construct the quiver $Q = (Q_0, Q_1)$ in the following way:

Paper presented at The VII-th International Conference on Nolinear Analysis and Applied Mathematics (ICNAAM), Târgovişte, 26-27 june, 2009

- $Q_0 = P$, and for every $x, y \in P$ let $\alpha : x \to y$, $\alpha(x) = \begin{cases} x \to y, x \le y \\ 0, else \end{cases}$. It means that exist an arrow from x to y only if $x \le y$ in P;

- Q_1 is the set of arrows between vertices of Q_0 .

Next, let $Q = (Q_0, Q_1)$ be a quiver. We can construct a k – vector space, denoted kQ, over k of base Q. We obtain $kQ = \{\sum_{i=1}^n a_i p_i | a_i \in k, p_i \ path \ in \ Q, n \in N^* \}$.

On this vector space we define a coalgebra structure:

$$\Delta: kQ \to kQ \otimes kQ, \Delta(p) = \sum_{p=p_1p_2} p_1 \otimes p_2$$

$$\varepsilon: kQ \to k, \varepsilon(p) = \delta_{|p|,0}$$

where if $p = \alpha_t...\alpha_{s+1}\alpha_s...\alpha_1$, then $p_1 = \alpha_t...\alpha_{s+1}$ and $p_2 = \alpha_s...\alpha_1$, for $1 \le s \le t$ and where |p| = t is the length of the path p.

The triplet $(kQ, \Delta, \varepsilon)$ is a coalgebra (the proof is in [5]-[6]) and it is called the path coalgebra associated to the quiver $Q = (Q_0, Q_1)$).

Definition 1.4. Let k be a commutative field.

A representation of a quiver $Q = (Q_0, Q_1)$ consist in:

1. to associate to every vertex from Q_0 and every arrow from Q_1 , a linear application from the vector space associated to the origin of the arrow considered, to the vector space associated to the vertex of the same arrow.

More precisely, a representation V of $Q = (Q_0, Q_1)$ is a set (collection)

$$\{V_i | i \in Q_0\}$$

of k – vector spaces of finite dimension together with a set (collection)

$$\{V_{\alpha}: V_{s(\alpha)} \to V_{t(\alpha)} | \alpha \in Q_1 \}$$

of k – linear applications.

The dimension of V is the map $d_V: Q_0 \to Z_{\geq 0}, d_V(i) = \dim V_i, \forall i \in Q_0.$

If V and W are two representations of the same quiver Q , then a map $\psi:V\to W$ is a set of k – linear applications

$$\{\psi_i: V_i \to W_i \,|\, i \in Q_0\}$$

such that

$$W_{\alpha}\psi_{s(\alpha)} = \psi_{t(\alpha)}V_{\alpha}, \forall \alpha \in Q_1.$$

By composing of maps V_{α} , we obtain a linear map V_p which corresponds to a nontrivial path p.

The category of the representations of a quiver Q we denote by rep(Q). Next we present in which way this category is equivalent to the category of comodules over path coalgebra kQ.

For a representation $V=(V_i,V_{\alpha})_{i\in Q_0,\alpha\in Q_1}$ of Q and for a path $p\in \mathbf{P}$, the linear application V_p is:

$$V_p = \begin{cases} I_{V_i} , & if \ p = e_i \ for \ some \ i \in Q_0 \\ V_{\alpha} , & if \ p = \alpha \ for \ some \ \alpha \in Q_1 \\ V_{\alpha_n} V_{\alpha_{n-1}} ... V_{\alpha_1} , & if \ p = \alpha_n \alpha_{n-1} ... \alpha_1 , \ where \ \alpha_i \ are \ arrows , \ i = \overline{1,n} \end{cases}$$

Definition 1.5. A representation V of the quiver Q is called rational if for every $i \in Q_0$ and for every $v \in V_i$, the set $\{p \in P(i,?) | V_p(v) \neq 0\}$ is finite.

Examples of representations 1.2.

1. A representations of the quiver

associated to the poset $(P = \{1, 2\}, \leq)$, is a collection of two vector spaces of finite dimention V_1, V_2 together a linear application $V_a: V_1 \to V_2$.

- 2. A representation of Jordan quiver associated to the poset $(P = \{1\}, =)$ is a vector space V_1 together a map $V_a : V_1 \to V_1$.
- 3. A representation of star-quiver

is a collection of vector spaces $\{V_1, V_2, V_3, V_4, V_5, V_6\}$ together with five linear applications $\{V_{a_i}: V_i \to V_6 \mid i = \overline{1,5}\}$. If all these applications are injective ones we can consider that this representation is in fact a representation of vector subspaces.

$\mathbf{2}$ Path coalgebra kQ and right comodules over kQ

Let V be a rational representation of Q. We define on the vector space $M := \bigoplus_{i \in Q_0} V_i$ a structure of kQ – right comodule by Δ_M :

$$\Delta_M(v) = \sum_{p \in P(i,?)} V_p(v) \otimes p$$
, for every $i \in Q_0$ and $v \in V_i$.
Because the representation is rational, the sum above is finite.

Proposition 2.1. Let M be a k - vector space and $\phi: P \times M \to M$ a linear application in the second argument. Let $\phi_p(m) = \phi(p, m)$, for any $(p, m) \in P \times M$. We define the map $\Delta_M: M \to M \otimes kQ$, by $\Delta_M(m) = \sum_{p \in P} \phi_p(m) \otimes p$, for $m \in M$. We obtain that the pair (M, Δ_M) is a right kQ – comodule only if the following conditions are satisfied:

(1) For every $m \in M$ and every $p_1, p_2 \in P$,

$$\phi_{p_2}(\phi_{p_1}(m)) = \begin{cases} \phi_{p_2p_1}(m), & \text{if } p_2p_1 \neq 0 \\ 0, & \text{if } p_2p_1 = 0 \end{cases} \text{ and }$$
(2) For every $m \in M, m = \sum_{i \in Q_0} \phi_{e_i}(m).$

Proof. It is enough to verify that the condition (1) is equivalent to $(I_M \otimes \Delta') \circ \Delta_M =$ $(\Delta_M \otimes I_{kQ}) \circ \Delta_M$ and, also, that the (2) condition is equivalent to $(I_M \otimes \varepsilon') \circ \Delta_M = i_M$, where i_M is the canonical isomorphism $i_M: M \to M \otimes k$.

 (M, Δ_M) is a right kQ – comodule if the diagrams from the definition 2 are commutative. So, for every m from M, we have

$$((\Delta_M \otimes I_{kQ}) \circ \Delta_M)(m) = (\Delta_M \otimes I_{kQ})(\Delta_M(m)) =$$

$$= (\Delta_M \otimes I_{kQ}) \left(\sum_{p_2 \in P} \phi_{p_2}(m) \otimes p_2 \right) = \sum_{p_2 \in P} \Delta_M (\phi_{p_2}(m)) \otimes p_2 =$$

$$= \sum_{p_2 \in P} \left(\sum_{p_1 \in P} \phi_{p_1}(\phi_{p_2}(m)) \otimes p_1 \right) \otimes p_2$$

and also,

$$((I_M \otimes \Delta') \circ \Delta_M)(m) = (I_M \otimes \Delta')(\Delta_M(m)) = (I_M \otimes \Delta') \left(\sum_{p \in P} \phi_p(m) \otimes p\right) =$$

$$= \sum_{p \in P} \phi_p(m) \otimes \Delta'(p) = \sum_{p \in P} \phi_p(m) \otimes \left(\sum_{p = p_1 p_2} p_1 \otimes p_2\right) = \sum_{p \in P} \sum_{p = p_1 p_2} \phi_p(m) \otimes p_1 \otimes p_2.$$

From above we obtain $(I_M \otimes \Delta') \circ \Delta_M(m) = (\Delta_M \otimes I_{kQ}) \circ \Delta_M(m)$, for every m from U, then (1) is true.

Nuch more, $((I_M \otimes \varepsilon') \circ \Delta_M)(m) = i_M(m), \forall m \in M \Leftrightarrow m = ((I_M \otimes \varepsilon') \circ \Delta_M)(m) = i_M(m)$

$$= (I_M \otimes \varepsilon') \left(\sum_{p \in P} \phi_p(m) \otimes p \right) = \sum_{p \in P} \phi_p(m) \otimes \varepsilon'(p) = \sum_{p \in P} \phi_p(m) \otimes \delta_{|p|,0} = \sum_{i \in Q_0} \phi_{e_i}(m) \otimes 1 = 0$$

 $=\sum_{i\in\Omega_0}\phi_{e_i}(m)$, then (2) in true.

Theorem 2.1. The pair $\left(M:=\bigoplus_{i\in Q_0}V_i,\Delta_M\right)$ is a right kQ – comodule.

The proof result from the above proposition.

Let $\Phi(V) = (M, \Delta_M)$, the functor $\Phi : Rat - rep(Q) \to Mod^{kQ}$ from the category of rational representations of the quiver Q to the category of right kQ – comodules.

Conversely, let kQ_0 be the vector space of base $\{e_i | i \in Q_0\}$. We define a k – linear application $\pi : kQ \to kQ_0$ by $\pi(p) = \varepsilon'(p)e_{t(p)}$, for every path $p \in \mathbf{P}$. Let consider now a right kQ – comodule $M = (M, \Delta_M)$. We define a representation $V = (V_i, V_\alpha)_{i \in Q_0, \alpha \in Q_1}$ of Q, in the following way:

- 1. For every $i \in Q_0$, let $V_i = \{m \in M \mid (I \otimes \pi) \circ \Delta_M(m) = m \otimes e_i\}$, which is naturally a k vector space because of the linearity of the maps which appear in V_i ;
- 2. For every $m \in M$ we can write in a unique way:

$$\Delta_M(m) = \sum_{p \in P} \phi_p(m) \otimes p,$$

where $\phi_p(m) \in M$, because **P** is a base of kQ.

The uniqueness of $\phi_p(m)$, $p \in \mathbf{P}$ make possible the definition of the map $V_\alpha : V_i \to V_j$ by $V_\alpha(m) = \phi_\alpha(m)$, $m \in V_i$ where $\forall \alpha : i \to j$ is an arrow from Q. Also, the uniqueness of $\phi_p(m)$ demonstrate the linearity of V_α .

Now let's prove that $\phi_{\alpha}(V_i) \subseteq V_j$.

Proposition 2.2. For every $i \in Q_0$ the following are true:

$$(1)V_i = \{ m \in M \mid m = \phi_{e_i}(m) \};$$
(1)

- (2) $\phi_{\alpha}(V_i) \subseteq V_j$, where $\alpha : i \to j$ is arrow in Q;
- (3) $\phi_{\mu}(m) = 0$ only if only $\mu \in \mathbf{P}(i,?)$;
- (4) $V_{e_i}(m) = \phi_{e_i}(m)$, then $m = \phi_{e_i}(m)$;
- (5) If $\mu = \alpha_n \alpha_{n-1} ... \alpha_1$ for some arrows $\alpha_1, \alpha_2, ..., \alpha_n$ (n > 0), then $V_{\mu}(m) = \phi_{\mu}(m)$ and

$$V_{\alpha_n}V_{\alpha_{n-1}}...V_{\alpha_1}(m) = \phi_{\mu}(m).$$

Proof. (1) For every $m \in M$ we have:

$$(I \otimes \pi) \Delta_M(m) = \sum_{\mu \in P} \phi_{\mu}(m) \otimes \pi(\mu) = \sum_{j \in Q_0} \phi_{e_i}(m) \otimes e_j.$$

Then, $V_i = \{m \in M \mid \phi_{e_j}(m) = \delta_{ij}m\} \subseteq \{m \in M \mid m = \phi_{e_i}(m)\}.$ (2) For every $m \in V_j$, we have $\phi_{e_j}(\phi_{\alpha}(m)) = \phi_{e_j\alpha}(m) = \phi_{\alpha}(m).$ We obtain $\phi_{\alpha}(m) \in V_j$.

The relations (3), (4) and (5) are immediately.

Proposition 2.2. Let V be a representation of Q obtained from a right kQ – comodule M as above. Then the following are true:

- 1. V is a rational representation.
- 2. $M = \bigoplus_{i \in Q_0} V_i$, as a sum of vector spaces.
- 3. For every $i \in Q_0$ and $v \in V_i$ we have

$$\Delta_M(v) = \sum_{\mu \in P(i,?)} V_{\mu}(v) \otimes \mu.$$

The proof follows immediately from the above lemmas.

If we denote with $\Psi(M) := V$, we obtain a functor $\Psi : Mod^{kQ} \to Rat - rep(Q)$ which is equivalent and quasi-inverse to $\Phi : Rat - rep(Q) \to Mod^{kQ}$, means that the category of rational representations of the quiver Q is equivalent to the category of right kQ – comodules.

Example 2.1.

Let Q be the quiver $(\{1,2\}, \{\alpha_i | i \in \mathbb{N}\}, t, s)$ where $s(\alpha_i) = 1$ and $t(\alpha_i) = 2$ for every $i \in \mathbb{N}$. Now, we consider the representation V with $V_1 = k = V_2$ and $V_{\alpha_i} = Id$, $\forall i \in \mathbb{N}$. Then V is 2-dimensional, but is not rational. We observe that any representation of the sub-quiver $Q^{(n)} := (\{1,2\}, \{\alpha_i | i = 1, ..., n\}, t, s), n \in \mathbb{N}$ fixed, of Q is rational, then they are considered as kQ – comodules.

3 Localization in the path coalgebra kQ

3.1 Some preliminaries.

In the following paragraph we consider that the reader is familiarized with notions from the theory of categories (see also [6]). Recall (from [4]-[5]) that if C is an abelian category, then a subcategory A of C is dense if and only if from every exact sequence $0 \to X' \to X \to X'' \to 0$ of objects from C, we have that $X \in A$ if and only if X' and X'' are from A. For every dense subcategory A of C exist an abelian category C /A and an exact functor $T: C \to C$ /A such that T(X) = 0, $\forall X \in A$ and with the universal property: for every functor $H: C \to C'$ such that H(X) = 0, $\forall X \in A$, does exist an unique functor $\overline{H}: C / A \to C'$ such that $\overline{H} \circ T = H$. The category C /A is called the factorization category of C with respect to the subcategory A.

Also, a dense subcategory A of C is called localizing if the functor $T: C \to C / A$ has a right adjunct $S: C / A \to C$, in this case S is called the section functor of T.

In the particular case in which C is a Grothendieck category (ex. the category of right comodules of a coalgebra C, M^C), a dense subcategory A of C is localizing if and only if it is closed under direct sums.

Let C and D be two coalgebras and $M \in M^C$ with the structure map $\rho_M : M \to M \otimes C$ and $N \in {}^CM$ with the structure map $\lambda_N : N \to C \otimes N$. The cotensor product $M ?_CN$ is the kernel of the linear application

$$\rho_M \otimes N - M \otimes \lambda_N : M \otimes N \to M \otimes C \otimes N.$$

In [1] is given the next theorem: If A is a localizing subcategory of M^C and X is a injective quasi-finite right C comodule such that $A = A_X$ and if we consider the injective Morita-Takeuchi context (D, C, X, Y, f, g) defined by X as in [1], then the functors

$$T = (-)?_C Y : \mathcal{M}^C \to \mathcal{M}^D \text{ and } S = (-)?_D X : \mathcal{M}^D \to \mathcal{M}^C$$

define a localization of M^C with respect to the localizing subcategory A. In particular M^C/A is equivalent to M^D .

3.2 Localization in the path coalgebra kQ

Now let $e \in kQ^*$ be an idempotent element. Then e(kQ)e can be endowed with a coalgebra structure given by:

$$\Delta_{e(kQ)e}(epe) = \sum_{p=p_1p_2} ep_1e \otimes ep_2e$$
 and $\varepsilon_{e(kQ)e}(epe) = e(p)$ where $\Delta(p) = \sum_{p=p_1p_2} p_1 \otimes p_2$, for every $p \in kQ$.

Since (kQ)e is a quasi-finite injective right kQ – comodule, we can consider the injective Morita-Takeuchi context (e(kQ)e, kQ, (kQ)e, e(kQ), f, g) as in [1], then the functors

$$T = (-)?_{kQ}e(kQ) : \mathcal{M}^{kQ} \to \mathcal{M}^{e(kQ)e} \text{ and } S = (-)?_{e(kQ)e}(kQ)e : \mathcal{M}^{e(kQ)e} \to \mathcal{M}^{kQ}$$

define a localization of M^{kQ} with respect to the localizing subcategory A_e = Ker $T = \{M \in M^{kQ} / M ?_{kQ} e(kQ) = 0 \} = \{ M \in M^{kQ} / eM = 0 \}.$

Much more, for any idempotent $e \in kQ^*$ and any vertex $x \in Q_0$, we have either e(x) = 0 or e(x) = 1. But two idempotent elements $e, f \in kQ^*$ are equivalent if and only if $e_{|Q_0} = f_{|Q_0}$, and so we have that every localizing subcategory of M^{kQ} is associated to an idempotent element $e \in kQ^*$ such that e(p) = 0 for any path p with length |p| > 0.

In [1], for any such idempotent element e it is defined a new quiver Q^e as:

- $Q_0^e = \{x \in Q_0/e(x) = 1\};$
- Q_1^e is the set of paths $p = \alpha_n ... \alpha_1$ in Q such that e(s(p)) = e(t(p)) = 1 and $e(s(\alpha_i)) = 0$, $\forall i = \overline{2, n}$.

Theorem 3.1. The localized coalgebra e(kQ)e is isomorphic with the path coalgebra of the quiver Q^e .

Consequence 3.2. The functor $T = (-)?_{kQ}e(kQ) : M^{kQ} \to M^{e(kQ)e}$ can be regarded as a functor from Rat - rep(Q) to $Rat - rep(Q^e)$.

References

- [1] Jara, P., Merino, L., Navarro, G., Ruiz, J.F., Localization in coalgebras. Stable localization and path coalgebras, Communications in Algebra, 34, 2843-2856, 2006
- [2] Montgomery, S., Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics Number 82, American Mathematical Society, 1993
- [3] Nastasescu, C., Dascalescu, S., Raianu, S., Hopf Algebras An Introduction, New York-Basel, Marcel Dekker Inc, 2001
- [4] Nastasescu, C., Torrecilas, B., Colocalization on Grothendieck categories with applications to coalgebras, J.Algebra 185, 203-220, 1994
- [5] Nastasescu, C., Torrecilas, B., Torsion theories for coalgebras, J.Pure Appl. Algebra 97, 108-124, 1996
- [6] Nastasescu, C., Rings. Modules, Categories, Ed. Academiei, Bucharest, 1976
- [7] Velicu, G., *Incidence coalgebra and path coalgebra*, International Journal of Pure and Applied Mathematics (IJPAM, ISSN 1311-8080) of Fifth International Conference of Applied Mathematics and Computing, Plovdiv, Bulgaria, 2008
- [8] Velicu, G., Coradical filtration for incidence coalgebra and path coalgebra, ICAM6, Baia Mare, 2008

Manuscript received: 11.06.2009 / accepted: 28.09.2009