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Abstract:  The paper deals with the incompressible flow past oscillating thin profiles.
In the frame work of the linearized theory, the pressure jump over the oscillatory profile is the
solution of a hypersingular integral equation. Using an asymptotic expansion of the kernel
with respect to the frequency of the oscillationo (which is a small parameter) and keeping
the leading terms, one obtaines a simplified form of the integral equation. We consider the
case of the flate profile and after solving the integral equation we calculate the aerodynamic
coefficients. For some particular profiles, the oscillatory motion can determine the apparition
of a propulsive force,when average drag coefficient becomes negative.
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1 Formulation of the Problem

An incompressible unsteady flow past an infinite cylindrical body moving with a given velocity
is considered. Unperturbed state is characterized by the fields of velocity, —Vji, the pressure
Peo, and the constant density p,. For an arbitrary time ¢, perturbation is given by the pressure
field, p (x,t), and velocity v = v (x, t).
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With respect to the of € - thickness body, only thin profiles are considered, in a such way,
perturbation produced over the fluid will be linearly. Term of the order O (¢) are leading.
Boundary conditions will be imposed over the chord of the profile which in this case can be
taken as projection of the profile onto the Oz-axis.

Results found in this paper are based on the general theory described in [5] and follows
as technique approaching, the paper [1], [2].
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2 The Integral Equation for the Pressure Jump

Perturbation (v,p) produced by an unsteady incompressible flow past a thin profile is de-
scribed by the following equations

: 0 1
divv =0, 2.+ (v-grad) v+—gradp = 0 (1)
ot Po
with respect to a Cartesian framework Ozy, where v = v (x,t) = ui + vj, x = i + yj.
Let C = C(t) be - the profile of equation F (z,y,t) = y — h(z,t) = 0. Denote by
n = (ny, ny, n¢) , normal vector to the wing profile at arbitrary point, (z,y,t), then
Oh oh
= T 9 = T a s ]-7 a7 2
0= (o) = (50 1 - ) 2)

For our sake, we suppose that wing profile is thin enough such that perturbations produced
into the fluid are very small and one may neglect products of perturbations quantities. By
following, from Eqgs. (1) ca be linearized equations around the rest state and the equations
of motion in term of distributions are found as

ou Ov Ou 10p  Ov 10p

%+8y_0’§+p_08$_0’§+p_08_y:'f50 (3)

1
where f = —[p], with [p|, is the prssure jump across the profile. Since
Po

A& =6 (x,t) — ngyhﬂx\
7

from Eq. (3) we get the pressure field and the downwash, in terms of distributions

pxt) = g (i) + (750 (1)

v(x,t) = —H (t) aa—; (%ln |X\> x foc (5)

where H (t) is Heaviside function. Therefore, for y # 0 one takes place the integral represen-
tation of the downwash distribution

2

1 /[t 0
= —— ! //_1 N2 9 !
vyt =5 [ @) gay =) s (6)

where C' (t') is projection of the lifting profile onto Ox’ - axis at the arbitrary moment #'.
Let consider Oz(My(l) a new system of coordinates related to the profile that has an
uniform translation moving of velocity —Vji with respect to the Oxzy system coordinates,
where
e =z +Vot, M=y (7)

Introduce also s(V) - the spatial variable by
sW =z — 20 vt —1). (8)
With respect to the new coordinates, the integral representation (6) becomes, for y £ 0,

v (20,40, 1) =
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We consider that lifting profile is subjected to harmonic oscillations and set
h(z,t) = h () exp (iwt), f(zD,t) = f (2D) exp (iwt)

v (z,yW, 1) = dO (29, 5V exp (iwt) . (10

then, pass to the dimensionless coordinates by

(1) (1) (1)
xZ Y S
- T, T 1]_
(nyJS) ( J b 3 a ) ( )

and, for simplicity, keep (x, y) as notation for the spatial coordinates of a fixed point belongs
to the wing profile.

Also denote profile projection on the Ozy - plane with respect to the dimensionless co-
ordinates. Then, one may replace (11) into Eq.(9) and take the limit when y — 0 whence,
for |z| <1 the two dimensional hypersingular integral equation for the pressure jump states

1 z—¢&
273‘/0 /_1 F (a€) exp {—z% (z g)} dg/ exp (i%@ i—j - d@).  (12)

In Eq.(12), p, Re(f exp(iwt)) is the jump of the pressure over the oscillating wing, p, is
the density of the fluid at rest, w is the oscillaitng frequency, and Vj is the translation velocity
of the unperturbed flow with respect to the Oz(My(D frame of reference. In the framework
of the linearized theory,

d (z) exp (iwt) = v (z\Mt) (13)

with v represents the downwash with respect to the new system of coordinates. With respect
to the OzMy( - system of coordinates general motion is described by the velocity vector
field

V=Wi+v (14)

where v represents the perturbation produced by the with into the fluid flow. To evaluate
the downwash distribution we employ the general sliding condition
OF /0t

V- = 17 15
e lgrad F| (15)

In the first approximation, the linearized boundary condition states

(1) ORY oy ) (o
v (z ,t):V()&E(l) (M) + iwht (ztY) (16)

We denote into dimensionless function and variable

1 . wa

whence by comparison, Eqs. (13) and (16) yield

d(z) =V (g—;‘ () + idh (x)) (18)

Furthermore, introducing the dimensionless function and variables

Fo) = gt (o) d = =
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Integral equation Eq.(12) becomes

1 n *Ig ) dﬁ ~

%/_1 (&) exp (—idoao) dg/oc eXps(#S)ds = 9 (@ (z) + ioh (x)> (19)
where xqg = © — £. The asterix * indicates the finite part of an integral considered in sense of
Hadamard. Eq. (19) represents the two-dimensional integral equation for the pressure jump.
The study of it solution will be debated in the followings sections.

3 Possio’s Equation

Denote by
N (20, 8) = %exp(—i(bxo)k(xo,@), k (20, 0) = / eXpS(#S)ds (20)
h(z) = —2 (% (z) + ik @)) x| <1 (21)

The integral equation (19) takes the simple form

gt
| FON @o)de=i@). jal <1 (22
-1
known in the literature as Possio’s equation.

4 On the Kernel Considerations

After one integration, (20) becomes

b (0, @) = SR U9T0) / " exp (i) ds (23)

iy S

—0oc

Since of fundamental integral relations

"Eo o d Iy
/ exp (iws) ds = iw Ei (iwxy) , Ei(z) = / “pL3) (S)ds

it follows that

" o 1) — 1
(0, 3) = S0 L9%0) o (7 — In || +/ Mdt) . (24)

Lo 0 t

5 Integral Equation of the Thin Profile of Low Frequency.

In the sequel; we consider only wings subjected to oscillations of low frequency (@ < 1). This
assumption will allow us to find an exact solution on a particular case. Such that, performing
an asymptotic expansion with respect to the small parameter @, and neglecting the terms of
O (@?) order, (24) can be expressed as

k(xo,@)fvw—(mx0|+r0)+o(@2),@<<1 (25)
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where, we have mentioned before zp = 2 — &, and T’y = %Z — ~.Therefore, by aid with (25),

the kernel NV (zg, @) becomes

N (20, = 21 4 & (o] + T) (26)

TXy T

and further, the Possio’s equation (22) changes into the final form

i)

m 11'—

§+—/ F&) (Inlz— €|+ To)de = h(2), |a] < 1. (27)

Eq. (27) represents the integral equation of the low frequency oscillating thin profile. Its
solution f, yields the pressure jump over the profile, when h (x) can be explicited when profile
equation is known.

6 Analytical Solution

Solution of the integral equation (27) will be found in two steps.
B First. Consider the equation

1t
[ F@ e —g+r)de =g (), ol <1 (28)
-1
for the unknown function f defined on (—1,1). Assume that f and g is a holderian function
for |z| < 1. We seek to express the general solut1on and investigate the necessary conditions
such that f is vanishing at the TE: f (1) = 0. Performing substitutions (€,z) — (6,0)
defined by &€ = cosf, x = coso, (0 <o <), Eq. (28) becomes
1 ’
——/ F* (0) (In |cos 0 — cos o] + Ty) d6 = G (o), (29)
T Jo

where
F*(0) = F(0)sinf = /1€ f ()

In the Fourier analysis theory one proves that

2
In|cosf —coso|=—1In2 — Z — cos mf cosmo (30)
m

m>1

The function F* (6) within (29) may be prolonged on (—m,0) up to an even function such
that be possible an expansion into even trigonometric functions series

F*(0) = ag + Z a, cosnb, G (o) = by + Z b, cos no (31)

n>1 n>1

where, the development coefficients a;, b; are defined by

Cl(]:l/ / f (&) de, anzg/ F*(0) cosnf do (32)
T Jo m™Jo

bozl/ﬂG(J) da:l/ g(§ :%/ G (o) cosno do (33)
0 —1 7
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whence, by replacing and equating the coefficients, it follows relations

Qn,

bo = —aol—‘, bn = ; (F = FO —1In 2) (34)

and finaly

Ly a=—fwvia - (3)

Therefore, when g (z) is given, the solution f (z) can be determined from the integral repre-
sentation

1 de x+£ )_
o) = =0 /\/1_72:1:— ﬂm/ “
1 g9 i
al'v1 — 22 _1\/1—52

We mention that, from relations (32), (33), and (34) it follows relation

b 1" g9
Flerae—1 | d 37
JRIGESEY s (37
used below at the lift coefficient computation.

A compatibility condition for existence of the solution may be found imposing Kutta-
Joukovschi. condition f (1) =0 at TE,

[ Jernso-2E] Nk (39)

B Second. We pass to the solving of the equation (27). Assume that f (z) and A (z)
satisfy Holder condition on the (—1,1) interval. The existence of the solution is studied in
[3]. In order to ensure the uniqueness of the solution, one has to impose the behavior of
the unknown f (-) at the end-points of the interval. We are interested to find that solution
bounded at the trailing edge, © = 1.

Analytical solution is based on reducing of the integral equation to a differential one.
Such that, denoting by

(36)

9@ == [ Fe e gl +1)ae (39
and further, Eq. (27) has been reduced to the differential equation
g (2) —idg () = h(zx), || <1. (40)
whose general solution is
9(0) = Cexp (i) + 90 (a) gn (2) = [ h(0)explio (o — )] (41)

where C'is a constant undetermined & priori and go (x) is a given function.
Now, Eq. (39) has been reduced to the one of first kind with right hand side given by
(41). Its solution may be expressed from (36) and has the general representation

~ sz C . 1Y, 1wwC ~
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where, fo (x) is acting as a paticular solution and it has been found from(36) when g (-) is
changed for go (+),

v = e[ ga(g) d¢

g :c+§go<§>d o g (6)

7r\/1—1:2 V11— alv1—a2 ) /1 —¢ 5
with
. 1 /[ N
Jo (@) = 1 / exp (ic3 cos 0) 0 (44)
T Jo
1 v
Ji (@) =-Jj (@) = 7—_/ cos f exp (iw cos 0) df (45)
tJo
That is, in terms of Bessel functions, 71,72, T3 can be expressed as follows
T = / exp (ic7 cos 0) d0 = ], (), (46)
4}
T, = / cosfexp (iwcosl) df = inJ, () (47)
0
T3 = /7r exp (i cos 0) do = Z Jp (@) sin no (48)
5 g cosf —coso V1 —xQ =

Finally, replace (46), (47) and (48) into (42), the solution takes a more convenient form. To
refine it, should be find the value of the constant C, such that condition f (1) = 0 takes
place. That is, from (38) and (41), it follows the identity

0

whence Go — /_’1 {(5 +1) 6, () — %go (f)]

1

d¢
V1-¢€
Therefore, once (49) and (50) has been evaluated, the pressure jump f (+) may be completely
explicited.

(50)

7 Aerodynamics Coefficients for the Flat Plate

. . . . . . - |4
For our seeking, non-dimensional time will be introduced by ¢ = —Ot, and for the next
a

considerations, the pressure coeflicient

C, (z.7) = Re { () exp(za{)} (51)

will be used. Among the aerodynamic characteristics of a wing, in the sequel, of a great
interest are the lift, moment, and drag coefficients, defined [5] respectively, by the relations

1

o (i) = —2 / C, (az,7) da, (52)

-1

1
Cy (1) = 2/ zC, (ax, by, 1) dz (53)
-1
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1

Cp (1) = -2 / n,C, (az, ) d, (54)
—1

In Eq. (54), n, represents the normal projection onto Oz - axis and has been set by (2).

3

Evaluation of the average drag coefficient,
. 1 (T L
p =~ / Cp(B)di (55)
T J

27 . I : : : : :
where, T'= — is oscillation period, represents an important point of our discussion.
w

8 Analytical Results for the Oscillatory Profiles
Let be C'= C'(t) - the wing profile of equation
C:F (W gV )=y —h(zW,¢) =0, 2V € [~a,q] (56)

be the wing profile equation with respect to z(NOyV) - system of coordinates related to the
profile. For the next partcular cases, the function h (z) will be specified and aerodynamics
coefficients will be evaluated.

B Flate Plate. In this case,

h(z) = —az, n, = cexp(icl), x € [-1,1] (57)

and from (21), (57) and (??) it follows

h(z) = 2a (1 +iox), (58)
0 (z) = ‘%O‘ (1 — exp (i) + 20z, (59)
Go =2r[2Jy (@) — 1] + mavi [4J1 (©) — %} ,

From (?7) and (?7) the function g (x) may be expressed as

w

9(z) = a (co _ ﬁ) exp (iGz) — o (236 + %) (60)

for the next considerations we have set C' = aCj, the constant C' being evaluated from (?7)
(?77?). For the lift coefficient, one applies the relating formula (37) such that

3

L. 1
—1 FO 2
For the lift coefficient we obtain the formula
1 -
Cr (f) = —maRe {F— (@i + 2CyJy (@) exp(m)} (62)
0

Further computations, needs to express the solution

fz) = —20(A+iwCo) ) _J, (@)sinno + (4i — ©Co) Jy (@) — (63)

o
e V1 — x?
z

. - o N
Vi [—2 + (4i + @wCo) Jo (@)] — Vi (C’OJO (@) + 5%«1)
213




JOURNAL OF SCIENCE AND ARTS

Therefore, from integral
tos TQ " .
z f(x)de = 5 (44 iwCh) 2a — Jy (@))
—1

the moment coeflicient has been found as
Cy (1) = —maRe {(4 +iwCy) (2 — Jo (@) exp(iat) }

The drag coefficient may be obtained from (54) as

Cp (t) = —ma® coswt Re {ri (@i + 2CoJy (@) exp(z'ovi)}

0

The average drag coefficient

where funtion ¢ (@) > 0 for some @ > &er € (—3,%) .

9 Analytical Results for the Undulatory Profile
In the sequel, one consider those profiles of equation (56) for which,
h <$(1>) = —aexp (—iwlx(l)) , T € [—a,da
Eq. (2) yields the projection of normal vector on the Oz - axis,
Ny = iowi exp (i&)tN— zwlx) , Wy =aw, z € [—1,1]
and from (21) and (67) it follows
h(z) = 2ia (& — wy) exp (—iw )

g0 (1) = 20— [ i07) — exp (i)
g (z) = aCyexp (ivz) + %;16«11) [exp (iwt) — exp (—iw; )]

2 (0 — wy)

/_ f(z)de = roC Jo (@) + (Jo (@) + Jo (w1))

r
|
Then, (50) and (70) it follows

cD—i—w1

2na (O — wy)

G, =
0 (@ + w1)

[© (Jy (@) = ido (w1)) +wi (1 (w1) +ido (wi))

1 N .
(o @ - iy <w1>>]

The constant, C, can be evaluated from (50), (46), and (71)

3 3

- Za'6 ) w (J1 (W) —iJy (W
o (Uu+w1)[ml(@)+(@+%)%@)}[ (J1 (@) = 1o (w1)) +
wi (J1 (wr) +idy (wy)) — Fio (Jo (@) — iy (M))}
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From (?7) and (70) one obtains the function g (x) may be expressed as

dai (0 — wy)

g (z) = Cexp (ivzx) — 20z — (exp (iwx) — exp (—iw1z)) (73)

w—+w 1
For the lift coefficient, we get the evaluation

CL <t) = 27TOZR€{[2J(] (wl) ((I) - wl) -

7 (@[(2+C)& — (2~ Co)w] M} (74)

For the moment coefficient we will proceed as above, and first determine the pressure jump

for this case.
~ 2

T = r v
(24 Co)w— (2—Cy)wi)} — 2@0@02 Jy (w) sin no—

{J(] (wl) ((IJ — wl) — JO ((I}) X

n>1
Qi (W — wy) ( Z
_ Jn ( smna—l—mZJ wy)sinno | +
(@ +w1) n>1 n>1

20w (0 — w)

((Z)—i‘wﬂvl — z?

[Z:L’JO (wl) + J] (wl)] —

aw
(@ + wi) V1 — 22

whence the moment coeflicient will be

C, (f) = 2raRe {

4wC’OZJ )sinno — Mx

et (& + wy)

X (d} ; Jn (w) sinno + wy ; I (W) sin na) + (é +_w°:’;) X

% (24 Co) @ — (2 — Co) w1l Jo (@)} i exp (z'a;t)} (76)

For the drag coefficient computation one takes into account that

X [wy (0 —wy) Jo (wr) +

' 2 sin (w2)

Nivr de = 7J; (wy)
_1 —_—

so that, with (54) one obtains

Cp (t) = —27?@2%(5:) Re {[(0(2+Co) 0 — (2= Cp)wy) Jo (@) +
2 (@ — w1) Jo (wi)] i exp (2iwt) } (77)

The average drag coefficient
~ Ta?
Cp=——-¢: (@)
where funtion ¢, (@) > 0 for some & > @, € (—Z,%).
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10 Self-Propulsion

Notice that when @ is such that Cj, < 0, then a propulsive force is appearing.
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