JOURNAL OF SCIENCE AND ARTS

A NUMERICAL SOLUTION FOR AN INITTAL VALUE
PROBLEM FOR ODE USING ARTIFICIAL NEURAL
NETWORK

EMIL LUNGU
Valahia University of Targovigte, Bd. Unirii 18, 130056 Téargovigte, Romania,
e-mail: emil. lungu@ualahia.ro

Abstract: Artificial Neural Networks (ANN) proved to be good tools for functions
approzimation. Starting from this idea the article presents a method for approximating the
solution of an initial value problem for ordinary differential equation (ODE) using ANN.
The performance function associated to the neural network is built in such a way that the
training process to produce at the output of the network a function that satisfies the differential
equation on the training set and also the initial condition.

Keywords:artificial neuralnetworks performancendapproximatiorfunctions,Isqnonlinea

1 Introduction

Research in the field of artificial neural networks has increased in the last years since their
various applications. Among the large number of application we may recall the hand-writing
recognition, voice recognition, human face recognition in people crowd. Also, neural net-
works have important applications in medicine, economy and meteorology (eg. short term
predictions).

The beginnings of research in ANN domain date since 1943 when Warren Mc Culloch
and Walter Pitts presented the first model of artificial neurons. Since that time the ANN
domain has developed continuously, different structure models and training algorithms being
proposed.

An artificial neural network is an attempt at imitating the nervous system present in
the biological organism. In essence an ANN consists from many processing units which
are interconnected in a complex network designed for transporting the information from the
inputs to some outputs. In analogy with a real biological neuron, each unit, known as artificial
neuron is characterized by a number of inputs that bring informations, and only one output
which may be distributed to other neurons. Each input is affected by multiplication with
a quantity called weight. Also, we may consider an extra input for each neuron having the
value equal to 1. Its weight is called bias.

Figure (1) represents an artificial neuron. TIts inputs are denoted by ing, k& = 1,n and
their correspondent weights are denoted by wg, k& = 1,n. The weighted inputs represent
impulses which added together activate the neuron to transmit the information further. The
activation function, also called transfer function is chosen accordingly with the problem to
be solved. There are some standard choices like linear transfer function, log-sigmoid, positive
linear transfer function, tan-sigmoid, radial basis function, triangular basis function. For our
purpose we use log-sigmoid and linear transfer functions. In mathematical form the output

Paper presented at The VI-th International Conference on Nolinear Analysis and Applied Mathematics
(ICNAAM), Targovigte, 21-22 nov, 2008

188


user
Typewritten Text
Keywords: artificial neural networks, performance and approximation functions, lsqnonlinear

user
Typewritten Text


JOURNAL OF SCIENCE AND ARTS

Figure 1: Artificial neural network

of a neuron has the folowing form:
a=f(O wy-ing+b) (1)
k=1

A typical interconnecting model of the neurons is the feed forward network. In this kind
of structure the neurons are grouped in a sequence of layers and there are allowed only
forward connections among neurons on consecutively layers. The first layer is called input
layer and the last is named as output layer. The layers in between are called hidden layers.
Information flows in such a network from the input layer to the output layer passing only
once through each neuron. Neurons situated on the input layer do not have any activation
function associated. Their role is only to distribute the information to the neurons on the
first hidden layer.

An usual training process of an ANN suppose to update the weights such that for the
training input data to have at the output of the network some specific values. In fact it is
built a performance function that measures how well the outputs of the network correspond to
the expected values. The training process is nothing else than an optimization process which
update the weights of the neural network such that the difference between the expected values
and the obtained ones to be as small as possible. In our case we construct the performance
function in such a way that the differential equation to be satisfied in a set of points used for
training and also the initial condition to be accomplished.

2 Description of the method

One of the most important application of neural networks is the functions approximation. It
is well known that feedforward neural networks have capacity of approximating continuous
functions to any desired accuracy using only few hidden layers. Once a neural network has
been trained it also has good extrapolating properties.

Starting from this idea we try to obtain an approximation of the solution of an initial
problem as the output of a feedforward neural network. The weights will be updated step by
step in a training process that involve a certain performance function.

In [1] it is proposed a method that construct the approximate solution of an initial problem
as a sum of two terms, one that satisfies the initial condition and another that is obtained as
the output of a neural network and that satisfies the differential equation in a set of points.

In this article we do not split the solution in two terms. The initial condition is also part
of the performance function. Also the training process for updating the weights does not

189



JOURNAL OF SCIENCE AND ARTS

involve the partial derivative of the performance function in respect to the weights of the
neural network. Numerical examples will show how the method works.
For the sake of an easy introduction we consider the following initial problem:

Y (z) = g(z,y), V€ la,b]
{ y(a) =y, (2)

but the method allows also an implicit form of the differential equation (that is we may also
have F(z,y,y) = 0). As in [1] we will consider a feedforward neural network with only
one hidden layer, and the input and output layers will have only one neuron. The activation
function for the neurons in the hidden layer will be chosen the sigmoid function that is defined

by .
f) =

while the transfer function for the output will be the linear function f(z) = .
Figure (2) presents the structure of the neural network.

Figure 2: Artificial neural network

Taking into account the way a single neuron works we see easily that the output of our
neural network is given explicitly by the formula

N
out(z) = Z v; - fluz +b;) +c¢
i=1

where N is the number of hidden neurons , u; is the weight of the connection between the
input neuron and the 7 — th hidden neuron,b; is the corresponding bias, v; is the weight of
the connection between ¢ — th hidden neuron and the output neuron, and c is the bias of the
output neuron.

Consider now a set of points {zx | £ = 1,m} C [a,b] and construct the performance
function as

Bw) = Y (2 w0) — Jlorout(ae))) +(out(a) )’

where w = (uy, ..., un, V1, -, Un,b1,...,bN,C)

To compute the performance function we need to compute the network output and the
derivative of this output with respect to the input in the set of considered points. Here the
values of the network weights are considered fixed until they are updated.

190



JOURNAL OF SCIENCE AND ARTS

In this simple case

dout al l

i—=1 i=1

but it gets more complicated in the case of more hidden layers. Even then, taking into
account the formula (1) rewritten as a(z) = f(3_;_, wk - ing(x) + b) for a certain neuron and

observing that
a(x) = (Z Wy - znk(x)) - f! (Z wg - ing(T) + b)
k=1 k=1

we are still able to compute the derivative of the network output the same way we compute
the network output. The calculus is performed sequentially from the input layer to the output
layer.

With the above introduction the training process is nothing else than a minimization
problem. We have to find the vector w that is a minimum point for the performance function.
For this purpose we used ”lsqnonlin” Matlab function that require the function to minimize

and an initial approximation w(®.

3 Details of implementation

The solution proposed in this article was entirely implemented in Matlab. Function ”Isqnon-
lin” is optimized to find the minimum of a function of the form F(w) = > P_, fA(w). It
is recommended to implement a vectorial function of the form G(w) = (fi(w),..., fo(w))
instead of providing the scalar function F' given above.

In our case function G has the following form

dé’jjt (z1) — f(zk, out(x1)
Ut (25) — f (k, out(zs)

G(w) =

dout () F(ry, out(ze)
out(a) — o

As we have already said the function ”lsqnonlin” requires an initial approximation to start
the calculus. To speed up the calculus we have computed a rough approximation of the
minimum using a genetic algorithm. In Matlab this is done using the function ”ga”.

Remark 3.1. The proposed solution do not compute the gradient of the performance function
with respect to the weights. This will result in a slower convergence of the process. Providing
the jacobian of the function G to "Isqnonlin” will improves the speed of convergence at an
extra cost of computing this jacobian.

4 Numerical results

Example 1 In this example we consider the nonlinear initial value problem

{ y'(z) = sin(z - y(z)), x€][0,3]
y(0) =1

To apply our method we considered a hidden layer with 10 neurons and the performance
function was constructed to satisfy the differential equation in 10 equally spaced points in
the problem domain and also to satisfy the initial condition . The first approrimation of the

191



JOURNAL OF SCIENCE AND ARTS

network weights was obtained by a genetic algorithm. For this approximation the performance
function had the value equal to 0.2223. After using ”lsqnonlin” the performance function
got the value 4.1956 - 10~%. Figure (3a)) shows the solution obtained with our method after
applying the genetic algorithm (red color) and also the solution obtained with Matlab function
“ode5” that implements the adaptive Runge-Kutta method. In the figure on the right right
it 1s represented the difference between the two solutions.

L i i L . L L 15 i N s
05 1 15 2 25 3 T 4 i} 05 1 15 2 25 3 35 4

(a) Neural network and Runge-Kutta solu- (b) Error
tions

Figure 3: Comparison between neural network and Runge-Kutta solutions for the initial
approximation obtained with genetic algorithm

Starting from the above solution and applying "lsqnonlin” we obtain the results in the

figure (4).

(a) Neural network and Runge-Kutta solu- (b) Error
tions

Figure 4: Comparison between neural network and Runge-Kutta solutions

Both figures represent the solution of the equation extended to the interval [0,4]. This
shows that the neural network has also good extrapolation capabilities.

Example 2 The presented method has the advantage that it can solve differential equation
in implicit form F(x,y,y') = 0 while Runge Kutta method and others require an explicit form
y' = f(x,y). In this example we consider the following problem:

{ zy(z) —y(z) +e¥ @1 2.2 =0, xc[l,4]
y(1) =0
having the exact solution y(x) = x - In(x) We used the same structure of the neural network

and also 10 equally spaced nodes in [1,4]. The initial solution produces a value for the
performance function equal to 18.1003. After using the optimization function ”lsqnonlin”

192



JOURNAL OF SCIENCE AND ARTS

this value become 4.1927 - 1077, Figures (5) and (6) are similar to those one in first example
and they show again the accuracy of the numerical solution. Since the solution is represented
on [0,5] we see that the neural network has again good extrapolation capabilities.

--'1 !."3 :‘ 25 3 35 ; -1.‘5 5 1 15 2 25 : 35 4 45 5
(a) Neural network and exact solutions (b) Error

Figure 5: Comparison between neural network and exact solutions for the initial approxima-
tion obtained with genetic algorithm

3
x 10
2

L e

.:1 !.‘5 :‘ 25 3 35 ; -1.'5 5 1 15 2 28 3 35 4 45 5
(a) Neural network and exact solutions (b) Error

Figure 6: Comparison between neural network and exact solutions

References

[1] Lagaris, L.E., Likas, A., Fotiadis, D.I., Artificial Neural Networks for Solving Ordinary

and Partial Differential Equation
[2] Rojas R., Neural Networks. A Systematic Introduction, Springer Verlag Berlin, 1996
[3] Kincaid, D., Cheney, W., Numerical analysis, Brooks/Cole Publishing Company, 1991

Manuscriptreceived07.07.2009 accepted05.10.200

193


user
Typewritten Text
Manuscript received: 07.07.2009 / accepted: 05.10.2009




