COMPACTNESS OF SOME CLASSES OF CONVEX FUNCTIONS

CORNELIU UDREA

University of Piteşti, Str. Târgu din Vale, Nr.1, 110040 Piteşti, Jud.Argeş, Romania, e-mail: corneliu_udrea@yahoo.com

Abstract: After two criteria of equicontinuity, we shall study the compactness and some consequences on the uniform convergence in the class of the solutions of the Dirichlet problem for the Monge-Ampère equation.

Keywords: the equicontinuity, the relative compactness, the Monge-Ampère equation **2000 Mathematics subject classification:** 26B25, 46B50

1 Criteria of equicontinuity

In this work $(E, \|\cdot\|)$ is a real normed space. If A is a nonvoid subset of E then $C(A) := \{u \in \mathbb{R}^A : u \text{ is continuous}\}$, and if A is convex then $\mathcal{U}(A) := \{u \in \mathbb{R}^A : u \text{ is convex}\}$.

D denotes an open nonvoid subset of a given topological space. If $A \subset X$ then, C(A; L) denotes the continuous functions on A with values in L. From now on for each sets A, B and $H \subset B^A$, and for each $x \in A$ we have $H(x) := \{h(x) : h \in H\}$.

Proposition 1.1. Assume that X and L are Hausdorff uniform spaces, Y is a dense set in X, and $H \subset C(X; L)$ such that H is uniformly equicontinuous on Y. We have the following assertions:

- (i). H is uniformly equicontinuous on X.
- (ii). If for each $y \in Y$, H(y) is a precompact (respectively a relatively compact) subset of L, then H is a precompact (respectively a relatively compact) subset of C(X; L) with respect to the topology of the precompact convergence.
- Remark 1.2. (i). In the framework of Proposition 1, if we suppose that X is precompact, then H is precompact (respectively a relatively compact) subset of C(X; L) with respect to the topology of the uniform convergence on X.
- (ii). We shall apply the previous proposition in the case of on open subset D of X and $H \subset C(\overline{D}; L)$ uniformly equicontinuous on D.

Proposition 1.3. Suppose that X is a Hausdorff topological space, Y is a nonvoid subset of X, L is a topological vector lattice and $H \subset C(X; L)$ such that

$$\exists u, v \in C(X; L) : u|_{X \setminus Y} = 0_L \text{ and } \forall h \in H, |h - v| \le |u|. \tag{1.1}$$

We have the following assertions:

- (i). H is equicontinuous on $X \setminus Y$.
- (ii). If H is equicontinuous on Y and for each $y \in Y$, H(y) is a precompact (respectively a relatively compact) subset of L, then H is a precompact (respectively a relatively compact) subset of C(X; L) with respect to the topology of the compact convergence on X.

Paper presented at The VI-th International Conference on Nolinear Analysis and Applied Mathematics (ICNAAM), Târgovişte, 21-22 nov, 2008

Remark 1.4. (i). Assume that in the conditions of the previous proposition the family H has the following property:

$$\exists u \in C(X; L) : u|_{X \setminus Y} = 0_L \text{ and } \forall h_1, h_2 \in H, |h_1 - h_2| \le |u|.$$
 (1.2)

It follows that H has also the properties stated in the conclusion of the previous proposition.

- (ii). The hypothesis of the second point of Proposition 3 is satisfied when H is a precompact (respectively a relatively compact) subset of C(Y, L) with respect to the topology of the compact convergence on Y.
- (iii). We shall apply the result of Proposition 3 in the following case: $D \subset X$ is a nonvoid open subset, $H \subset C(\overline{D}; L)$ and either:

$$\exists u, v \in C(\overline{D}, L) : u|_{\partial D} = 0_L \text{ and } \forall h \in H, |h - v| \le |u|.$$
 (1.3)

or

$$\exists u \in (\overline{D}; L) : u|_{\partial D} = 0_L \text{ and } \forall h_1, h_2 \in H, |h_1 - h_2| \le |u|.$$
 (1.4)

Corollary 1.5. Given X a compact space and u, v, H as in Proposition 3 (respectively u, H as in Remark 4 (i).) it follows:

- (i). H is equicontinuous on $X \setminus Y$.
- (ii). If H is equicontinuous on Y and $L = \mathbb{R}$, H is relatively compact with respect to the topology of the uniform convergence on X.

2 Some backgrounds of the convex functions

This section is devoted to defining and recalling the basic notions and results (from [1], [2], [6] or [13]) which are used in this work.

- **Lemma 2.1.** Suppose D is convex, $H \subset \mathcal{U}(D)$ and $a \in D$ such that $H(a) := \{h(a) : h \in H\}$ is bounded. The following assertions are equivalent:
 - (i). For each $x \in D$, H(x) is upper bounded,
 - (ii). For each $x \in D$, H(x) is bounded.

Theorem 2.2. ([1] and [2]) Given D an open convex subset of E and $H \subset \mathcal{U}(D)$ such that for each $x \in D$, H(x) is bounded then for every $a \in D$ the following assertions are equivalent:

- (i). H is equicontinuous at a.
- (ii). H is upper bounded on a neighbourhood of a.

Corollary 2.3. For each family H as in the previous proposition the following assertions are equivalent:

- (i). H is equicontinuous on D.
- (ii). H is upper bounded on an open nonvoid subset of D.

Proposition 2.4. Take $H \subset \mathcal{U}(D)$ where D (is open convex subset of E), V an open nonvoid subset of D and

 $r \in (0, \infty)$ such that $V + \overline{B}(0_E, r) \subset D$ and H is bounded on $V + \overline{B}(0_E, r)$. Then H is equi-Lipschitz family on V (particularly H is uniformly equicontinuous on V).

Corollary 2.5. Being given D a nonvoid open convex subset of \mathbb{R}^k and $H \subset \mathcal{U}(D)$ such that for each $x \in D$, H(x) is bounded we have the following assertions

- (i). H is equicontinuous on D.
- (ii). For each K a compact subset of D: (a). H is bounded on K. (b). H is equi-Lipschitz family on K (particularly H is uniformly equicontinuous on K).

Proposition 2.6. If $H \subset \mathcal{U}(\overline{D}) \cap C(\overline{D})$ (D open convex subset of E) satisfies the condition (1.1) then we have the following assertions:

- (i). H is equicontinuous on \overline{D} .
- (ii). H is relatively compact in $C(\overline{D})$ with respect to the topology of the compact convergence.
- (iii). Suppose D relatively compact. It follows that H is relatively compact in $C(\overline{D})$ with respect to the topology of the uniform convergence.

From now on in this section $E = \mathbb{R}^k$ $(k \in \mathbb{N}^*)$, D is strictly convex and λ is the Lebesgue measure on \mathbb{R}^k . Moreover, $\mathcal{M}_+(D)$ (respectively $b\mathcal{M}_+(D)$) is the set of positive (respectively positive and bounded) Radon measures on D, and $L^{\infty}(D)$ denotes the space of λ -essentially bounded functions on D.

Theorem 2.7. ([6]) (i). For each $u \in \mathcal{U}(D)$, there exists $\nu_u \in \mathcal{M}_+(D)$ such that if u is twice continuously differentiable and $K \subset D$ is compact

$$\nu_u(K) = \int_K \det(D^2 u) d\lambda.$$

- (ii). For each $u, v \in \mathcal{U}(D)$ and $\alpha \in \mathbb{R}_{+}^{\star}$ we have:
- (a) $\nu_{u+v} \ge \nu_u + \nu_v$, (b) $\nu_{\alpha \cdot u} = \alpha^k \cdot \nu_u$.
- (iii). If $(u_n)_{n\in\mathbb{N}}\subset\mathcal{U}(D)$ and $(u_n)_{n\in\mathbb{N}^*}\to u_0$ uniformly on the compact subsets of D, then $(\nu_{u_n})_{n\in\mathbb{N}^*}\to (\nu_{u_0})$ vaguely on U.

Remark 2.8. (i). For each $u \in \mathcal{U}(D)$, ν_u is called the curvature measure of u.

(ii). If $\mu \in b\mathcal{M}_+(D)$, $\varphi \in C(\partial D)$ and $u \in \mathcal{U}(\overline{D})$ are defined as it follows:

$$\nu_u = \mu \text{ and } u|_{\partial D} = \varphi,$$

then u is called the solution of the Dirichlet problem for the Monge-Ampère equation (i.e., the solution of the Dirichlet problem).

Proposition 2.9. ([6]) For each $u, v \in \mathcal{U}(D)$, we have the following assertions:

- (i). (The minimum principle). If $\nu_u \leq \nu_v$ and $(\operatorname{sci}_D u)|_{\partial D} \geq (\operatorname{sci}_D v)|_{\partial D}$, then $u \geq v$. (Here $\operatorname{sci}_D u : \overline{D} \to \overline{\mathbb{R}}$, $\forall a \in \overline{D}$, $(\operatorname{sci}_D u)(a) := \liminf u(x)$).
 - (ii). (The boundedness principle). Suppose $m \in \mathbb{R}$ is such that $m \leq (\mathrm{sci}_D u)|_{\partial D}$. Then

$$u \ge m - (\operatorname{diam} D) \sqrt[k]{\frac{\nu_u(D)}{\omega_k}}, \text{ where } \omega_k := \lambda(B(0_k, 1).$$

Theorem 2.10. (the existence of the solution of the Dirichlet problem)([6] and [11]). For each $\mu \in b\mathcal{M}_+(D)$ and

 $\varphi \in C(\partial D)$ there is one and only one function $M(\mu; \varphi) \in \mathcal{U}(\overline{D}) \cap C(\overline{D})$ such that:

$$\nu_{M(\mu;\varphi)} = \mu \ and \ (M(\mu;\varphi))|_{\partial D} = \varphi.$$

Proposition 2.11. ([6]). Take $\mu_1, \mu_2 \in b\mathcal{M}_+(D)$ and $\varphi_1, \varphi_2 \in C(\partial D)$. Then:

- (i). $M(\mu_1 + \mu_2; \varphi_1 + \varphi_2) \ge M(\mu_1; \varphi_1) + M(\mu_2; \varphi_2)$.
- (ii). If $\mu_1 \leq \mu_2$ and $\varphi_1 \geq \varphi_2$, it follows that $M(\mu_1; \varphi_1) \geq M(\mu_2; \varphi_2)$.

(iii). inf
$$\varphi_1$$
 – (diam D) $\sqrt[k]{\frac{\mu_1(D)}{\omega_k}} \le M(\mu_1, \varphi_1) \le \sup \varphi_1$.

Corollary 2.12. For each $\mu, \mu_1, \mu_2 \in b\mathcal{M}_+(D)$ and

 $\varphi, \varphi_1, \varphi_2 \in C(\partial D)$ we have the following sentences:

- (i). $|M(\mu_1; \varphi_1) M(\mu_2; \varphi_2)| \le -M(|\mu_1 \mu_2|; -|\varphi_1 \varphi_2|)$.
- (ii). $|M(\mu_1; \varphi) M(\mu_2; \varphi)| \leq -M(|\mu_1 \mu_2|; 0)$.
- (iii). $|M(\mu; \varphi_1) M(\mu; \varphi_2)| \le -M(0; -|\varphi_1 \varphi_2|)$.

3 Example: families of the solutions of the Dirichlet problem for the Monge-Ampère equation

From now on D is an open strictly convex and bounded subset of \mathbb{R}^k and we shall consider the solutions of the Dirichlet problem for the Monge-Ampère equation.

Theorem 3.1. Let $\mathcal{M} \subset b\mathcal{M}_+(D)$ and $\mu_0 \in b\mathcal{M}_+(D)$ be such that for every $\mu \in \mathcal{M}$, $\mu \leq \mu_0$ For each $\varphi \in C(\partial D)$ the set $\{M(\mu : \varphi) : \mu \in \mathcal{M}\}$ is relatively compact in the topology of the uniform convergence on the set \overline{D} .

Theorem 3.2. If $\mathcal{F} \subset C(\partial D)$ is a bounded set in $(C(\partial D), \|\cdot\|_{\infty})$ and $\mu \in b\mathcal{M}_{+}(D)$, then $\{M(\mu; \varphi) : \mu \in \mathcal{F}\}$ is relatively compact in C(D) with respect to the topology of compact convergence.

Proposition 3.3. Let $\mathcal{F} \subset C(\partial D)$ be such that for each $\varphi \in \mathcal{F}$, $|\varphi| \leq \varphi_0$, where $\varphi_0 \in C(\partial D)$, and $\mathcal{M} \subset b\mathcal{M}_+(D)$ be such that for each $\mu \in M$, $\mu \leq \mu_0$, where $\mu_0 \in b\mathcal{M}_+(D)$. The set $\{M(\mu;\varphi) : \mu \in \mathcal{M} \text{ and } \varphi \in \mathcal{F}\}$ is relatively compact in C(D) with respect to the topology of the compact convergence.

Corollary 3.4. Suppose that $(\mu_n)_{n\in\mathbb{N}^*}$, μ , γ are positive Radon bounded measures on D such that $(\mu_n)_n \to \mu$ in the vague topology and $\mu_n \leq \gamma$ for all $n \in \mathbb{N}^*$. For each $\varphi \in C(\partial D)$ it follows that $(M(\mu_n; \varphi))_n \to M(\mu; \varphi)$ uniformly on \overline{D} .

Corollary 3.5. Let $(f_n)_n \subset \mathcal{L}_+^{\infty}(D)$ be bounded with respect $\|\cdot\|_{\infty}$ and $f \in \mathcal{L}_+^{\infty}(D)$ be such that $(f_n)_n \to f$ λ a.e. on D. For each $\varphi \in C(\partial D)$

$$(M(f_n \cdot \lambda; \varphi))_n \to M(f \cdot \lambda; \varphi)$$
 uniformly on \overline{D} .

Proposition 3.6. Let $(\mu_n)_n$, μ be positive bounded Radon measures such that $(\mu_n)_n \to \mu$ strongly on the space $C_c(D)$ and let $(\varphi_n)_n \subset C(\partial D)$ be such that $(\varphi_n)_n \to \varphi$ uniformly on ∂D . It follows that $(M(\mu_n; \varphi_n))_n \to M(\mu; \varphi)$ uniformly on \overline{D} .

Corollary 3.7. Suppose $(f_n)_n \subset \mathcal{L}_+^{\infty}(D)$ bounded and λ a.e. convergent on D to the map f. If $(\varphi_n)_n \subset C(\partial D)$ is uniformly convergent to the function φ on ∂D , then $M(f_n \cdot \lambda; \varphi_n)_n$ is uniformly convergent to the map $M(f \cdot \lambda; \varphi)$ on the set \overline{D} .

References

- [1] Bertin, E.M.J., Fonctions convexes et théorie du potentiel. Preprint nr.89, Univ. Utrecht, 1978.
- [2] Bertin, E.M.J., Convex Potential Theory. Preprint nr. 489, Univ. Utrecht, 1987.
- [3] Bourbaki, N., Élémentes de mathématiques. Integration. Ch. 1-4, Hermann, Paris, 1969.
- [4] Bourbaki, N., Elémentes de mathématiques. Integration. Ch. 5, Hermann, Paris, 1956.
- [5] Bourbaki, N., Élémentes de mathématiques. Topologie generale. Ch. 10, Hermann, Paris, 1961.
- [6] Gool, Frans van, Topics in Non-linear Potential Theory. Ph.D. thesis, Utrecht, 1992.
- [7] Peressini, A.L., Ordered topological vector spaces. New York, 1967.
- [8] Rockafellar, T., Convex Analysis. Princeton Univ. Press, Princeton, 1970.

- [9] Schaefer, H.H., Topological vector spaces. MacMillan, New York, 1966.
- [10] Udrea, C., Nonlinear Resolvents. Rev. Roumaine Math. Pures et Appl. XL, 7-8, 691-712, 1995.
- [11] Udrea, C., The Perron-Wiener-Brelot Method and the Monge-Ampère Equation, Proc. of XVI-th R. Nevanlinna Coll., Walter de Gruyters & Co, 279-288, 1996.
- [12] Udrea, C., On Nonlinear Operators: Boundedness and Maximum Principles. Rev. Roumaine Math. Pures Appl., **XLVI**, 1, 125-136, 2001.
- [13] Udrea, C., A Family of Nonlinear Resolvents., SEAMS Bull. Math., 29, 785-806, 2005.
- [14] Udrea, C., Resolvents and Nonlinear Potential Theory., New Trends in Potential Theory, Theta, 163-173, 2005.

Manuscript received: 11.02.2009 / accepted: 15.08.2009