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1 Criteria of equicontinuity

In this work (E, | - ||) is a real normed space. If A is a nonvoid subset of E then C(A) :=
{u € R : u is continuous}, and if A is convex then U(A) := {u € R* : u is convex}.

D denotes an open nonvoid subset of a given topological space. If A C X then, C(A4; L)
denotes the continuous functions on A with values in L. From now on for each sets A, B and
H C B4, and for each x € A we have H(z) := {h(z) : h € H}.

Proposition 1.1. Assume that X and L are Hausdorff uniform spaces, Y is a dense set in
X, and H C C(X; L) such that H is uniformly equicontinuous on'Y. We have the following
assertions:

(1). H is uniformly equicontinuous on X.

(11). If for each y € Y, H(y) is a precompact (respectively a relatively compact) subset of
L, then H is a precompact (respectively a relatively compact) subset of C(X; L) with respect
to the topology of the precompact convergence.

Remark 1.2. (i). In the framework of Proposition 1, if we suppose that X is precompact,
then H is precompact (respectively a relatively compact) subset of C(X; L) with respect to
the topology of the uniform convergence on X.

(ii). We shall apply the previous proposition in the case of on open subset D of X and
H C C(D; L) uniformly equicontinuous on D.

Proposition 1.3. Suppose that X is a Hausdorff topological space, Y is a nonvoid subset of
X, L is a topological vector lattice and H C C(X; L) such that

Ju,v € C(X; L) : ulx\y =05, and Yh € H,|h —v| < |ul. (1.1)

We have the following assertions:

(1). H is equicontinuous on X \ Y.

(11). If H is equicontinuous on'Y and for eachy € Y, H(y) is a precompact (respectively
a relatively compact) subset of L, then H is a precompact (respectively a relatively compact)
subset of C(X; L) with respect to the topology of the compact convergence on X.
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Remark 1.4. (i). Assume that in the conditions of the previous proposition the family H has
the following property:

du € C(X, L) : U‘X\y = OL and Vhl,hQ € H, |h1 — h2| S |U| (12)

It follows that H has also the properties stated in the conclusion of the previous proposition.
(ii). The hypothesis of the second point of Proposition 3 is satisfied when H is a precom-
pact (respectively a relatively compact) subset of C (Y, L) with respect to the topology of the
compact convergence on Y.
(iii). We shall apply the result of Proposition 3 in the following case: D C X is a nonvoid
open subset, H C C(D; L) and either:

Ju,v € C(D, L) : ulpp = 0r, and Yh € H, |h —v| < |ul. (1.3)

or
du € (E, L) : u|aD =07, and Vhl, he € H, ‘hl — h2| < |U| (14)

Corollary 1.5. Given X a compact space and u,v, H as in Proposition 3 (respectively u, H
as in Remark 4 (i).) it follows:

(1). H is equicontinuous on X \'Y.

(11). If H is equicontinuous on'Y and L = R, H is relatively compact with respect to the
topology of the uniform convergence on X.

2 Some backgrounds of the convex functions

This section is devoted to defining and recalling the basic notions and results (from [1], [2],
[6] or [13]) which are used in this work.

Lemma 2.1. Suppose D is convex, H CU(D) and a € D such that H(a) := {h(a): h € H}
1s bounded. The following assertions are equivalent:

(i). For each x € D, H(x) is upper bounded,

(i1). For each x € D, H(x) is bounded.

Theorem 2.2. ([1] and [2]) Given D an open conver subset of E and H C U(D) such that
for each x € D, H(z) is bounded then for every a € D the following assertions are equivalent:
(1). H is equicontinuous at a.
(11). H is upper bounded on a neighbourhood of a.

Corollary 2.3. For each family H as in the previous proposition the following assertions are
equivalent:

(1). H is equicontinuous on D.

(11). H is upper bounded on an open nonvoid subset of D.

Proposition 2.4. Take H C U(D) where D (is open conver subset of E), V' an open nonvoid
subset of D and

r € (0,00) such that V + B(0g,r) C D and H is bounded on V + B(0Og,r). Then H is
equi-Lipschitz family on V' (particularly H is uniformly equicontinuous on V).

Corollary 2.5. Being given D a nonvoid open convex subset of R and H C U(D) such that
Jor each € D, H(x) is bounded we have the following assertions

(1). H is equicontinuous on D.

(11). For each K a compact subset of D: (a). H is bounded on K. (b). H is equi-Lipschitz
family on K (particularly H is uniformly equicontinuous on K ).
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Proposition 2.6. If H C U(D)NC(D) (D open conver subset of E) satisfies the condition
(1.1) then we have the following assertions:

(i). H is equicontinuous on D.

(ii). H is relatively compact in C(D) with respect to the topology of the compact conver-
gence.

(ii3). Suppose D relatively compact. It follows that H is relatively compact in C(D) with
respect to the topology of the uniform convergence.

From now on in this section £ = R* (k € N*), D is strictly convex and ) is the Lebesgue
measure on R¥. Moreover, M, (D) (respectively bM (D)) is the set of positive (respectively
positive and bounded) Radon measures on D, and L°°(D) denotes the space of A-essentially
bounded functions on D.

Theorem 2.7. ([6]) (i). For each u € U(D),there exists v, € ML (D) such that if u is twice
continuously differentiable and K C D 1s compact

- / det(D?u)d)
i

(ii). For each u,v € U(D) and o € R we have:
(a) Vi > Vo + vy, (b)Vgu = aF -1y,

(11%). If (Un)nen C U(D) and (uy)nen- — wo uniformly on the compact subsets of D, then
(V) e — (Vuy) vaguely on U.

Remark 2.8. (i). For each u € U(D), v, is called the curvature measure of .
(it). If p € bM (D), ¢ € C(OD) and u € U(D) are defined as it follows:

=H and u|8D = ¢,

then u is called the solution of the Dirichlet problem for the Monge-Ampere equation (i.e.,
the solution of the Dirichlet problem).

Proposition 2.9. ([6]) For each u,v € U(D), we have the following assertions:
(1). (The minimum principle). If v, < v, and

(scipu)|ap > (scipv)|ap, then u > v.

(Here scipu: D — R, Ya € D, (scipu)(a) := %glgglfu(:r))

(11). (The boundedness principle). Suppose m € R is such that m < (scipu)|op. Then

V(D)

Wk

u > m — (diamD) { , where wg := A(B(0, 1).

Theorem 2.10. (the existence of the solution of the Dirichlet problem)([6] and [11]). For
each p € bM_(D) and

@ € C(OD) there is one and only one function

M(u; ) € U(D) N C (D) such that:

UM(u;p) = M and (M(:u 90))|8D =¥

Proposition 2.11. ([6]). Take pq, po € bM_(D) and @y, ps € C(OD). Then:

(). M (g1 + pi2; 01+ 02) > M (pr;01) + M (pos @2) -
(11). If p1 < po and @1 > o, it follows that

M (p15p1) = M (p2; 2).
(113). inf oy — (diamD) ¢ “1 ) < M(p1, 1) < sup ¢.
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Corollary 2.12. For each p, ji1, o € bM_ (D) and

©, p1, ps € C(OD) we have the following sentences:
(i) |M (pa5 1) — M (p2; 92)] < =M (g1 — pals — o1 — 2l) -
(1) |M (1 ) — M (a3 )] < =M (|pp1 — po];0).
(i), |M (155 01) — M (115 02)| < =M (0; = o1 — o).

3 Example: families of the solutions of the Dirichlet problem for the Monge-
Ampere equation

From now on D is an open strictly convex and bounded subset of R* and we shall consider
the solutions of the Dirichlet problem for the Monge-Ampere equation.

Theorem 3.1. Let M C bM (D) and py € bM (D) be such that for every u € M, p < g
For each ¢ € C(OD) the set {M(p: ) : u € M} is relatively compact in the topology of the

uniform convergence on the set D.

Theorem 3.2. If F C C(0D) is a bounded set in
(C(OD), | + |loo) and p € bM (D), then {M{(u; ) : p € F} is relatively compact in C(D)
with respect to the topology of compact convergence.

Proposition 3.3. Let F C C(0D) be such that for each ¢ € F, |¢| < o, where oy € C(OD),
and M C bM_ (D) be such that for each n € M, p < o, where py € bM, (D). The set
{M(p;0) : p € M and ¢ € F} is relatively compact in C(D) with respect to the topology of
the compact convergence.

Corollary 3.4. Suppose that (fin)nen-, 11,7y are positive Radon bounded measures on D such
that (pn)n — p in the vague topology and p, < v for all n € N*. For each ¢ € C(0D) it
Jollows that (M (1in; ¢))n — M (p; @) uniformly on D.

Corollary 3.5. Let (f,)n C LP(D) be bounded with respect || - ||« and f € L(D) be such
that (fp)n — f X a.e. on D. For each ¢ € C(0D)

(M(fn X)), — M(f - X;¢) uniformly on D.

Proposition 3.6. Let (pi,)n, p be positive bounded Radon measures such that (py), — p
strongly on the space C.(D) and let (p,), C C(OD) be such that (pn)n — @ uniformly on
OD. It follows that (M (ptn; pn))n — M (u; @) uniformly on D.

Corollary 3.7. Suppose (fn)n C LT(D) bounded and X a.e. convergent on D to the map f.
If (on)n C C(OD) is uniformly convergent to the function ¢ on dD, then
M(fn - X on))n is uniformly convergent to the map M(f - \; @) on the set D.
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