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The vectorial method is is applicable for studying a large class of properties of the 
uclidian space (coliniariy, coplanarity, parallelism, perpendicularity, calculation of angles, 
istances, volumes, etc) 

ore direct 
nd eloquent. It is good to know several methods. But more important is to know to choose, 
dapt and use the best suited method. 

ill be presented several geometry problems solved by using the vectorial 
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There are some exercices in geometry in which the vectorial method is m

a
 There w
method. 
 SENTENCE: Points A, B, M, where M ≠ B  and   
r∈ R - {-1},  . Then, for any point O ∈ P  we have 

 
and reciprocal. 

 

 M(r<0)B M(r>0)A
 

 

 

 O
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A1. M, N, middle points of BC, CD of the ABCD parallelogram and P intersection of AM, 

BN. Calculate    . 

 
Solution 

 

 

 

   

 

 

 

  

En general, 

p=
MC
BM

  and  q=
CN  
ND

x=
PM

    and       
AP

y=
BP  
PN

We will write that the position vectors of P and M raported with a point from the plan 
(point A) are collinear. 

yFrom      =
PN
BP

   

  

results  the position vector of point P: 
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we obtain: 
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Replacing (2) in (1) we obtain: 
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+
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 We will calculate AMreported to AB and AD . 

p= From
MC

 

    

BM

we obtain the position vector of point M: 

p1
ACABAM

+
⋅+

=
p         
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or 

    AD
1+ p

ABAM ⋅+=
p       (4) 

 Vectors AP and AM are  collinear if exists k∈ R  *

AMAP ⋅= k  
 From (3) and (4) we obtain: 
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 Vectors AB and AD  are not collinear, thus: 

 and 
p

p
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+
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 Which leads to: 

pqq
pqpy

++
+

==
1PN

BP  

α==
CE
CN

AC
AM .    A2. ABCDEF a hexagon and M∈(AC), N∈(CE), 

 Calculate α knowing that B, M, N are collinear. 
 

 Solution 

 

  

 

 

 

 

 

 

From α=
AM    results 

α−
α

=
1MC

AM . 
AC

 The position vector of point M is: 

BCBA)1(
BC

BM ⋅α+⋅α−=
⋅
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 From α
CN

  results   =
EC α−

α
=

CN . 
1NE

 The position vector of point N is: 
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B
α

BC)1(BA2BN α++α=       
 N are collinear if and on

 

 Points B, M, ly if m∈R* exists, and 

BNBM ⋅= m         

 

 
 or 

BC)1(BA2BCBA)1( α++α=α+α− mm   

 Vectors  BA   and BC  not being collinear, results 

  şi  )1( α+=α m    mα=α− 21

 Results 

  
3

1
=α   

   A3. ABC a triangle, A', B', C' the middles of [BC], [CA], [AB] and a 

oint K from the plan, '' BBKC =p . Show that CK and AA' are parallel. 
 

 Solution 

 

 

 

   

 

 

 

 

 

  

 

A' is the middle of [BC]. Results that the position vector of  A' is 

2
ACABAA' +

=        (1) 

We have 
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 So, AA'C =  equivalent to  KC || AA'  K
 
R
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Abstract: The purpose of this article is to a short introd tion to the vector ε  
acceleration algori  and
of a linear system o quati

thm  give an example of how it can be used to approximate the solution 
f e ons.   

 
1. Section 1. 

 this section is given the formula of the vector In ε  algorithm and a theorem related to the 
application of this algorithm to a sequence which satisfies a linear recursive equation.  
Definition 1. For any {0}p∈a R ‚  we will denote by 1−a  the following expression  

 1− =
< , >a a

 is easy to prove that the above nition for the inverse of a vector satisfies the following 
properties.  

ition ny  we have  
1. 

aa  

 
It  defi

 {0}p∈a R ‚Propos 2. For a
1 1( )− − =a a   

2. 
 Now we consider a sequence 

1 1−< , > =a a   
{ }n n N∈x  of vectors in pRDefinition 3.  and define a double 

dexed sequence ( )n
kεin  by  

1 ( )n n n n
k k n k Nε ε ε ε+ + −

−

 (1)  
( ) ( )
1 00 p
n n

nR
x n Nε ε−⎧ = , = , ∈

⎨ ( ) ( 1) ( 1) ( ) 1
1k k+ = + − , , ∈⎩

 

 

 247


