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Abstract: In the paper below are evaluated the expectation values of the natural
powers of Brownian motion. It is given the definition of these evaluations and will be
demonstrated the recurrent relation between the terms of the same row. In these evaluations
1t is used the integral stochastic Ito calculation.

1. Introduction

The Brownian movement modulates systems with a large amount of random and
independent effects, which if considered apart from the others they have no effect on the
system, but which in total, gathered, these effects generate a stochastic Gaussian process.

According to Kolmogorov theory, it is enough to generate the Brownian motion {B, },20’

naming a family {th yeensV } of probability values that meet the conditions of this theory.

"
Summary: According to the things mentioned above we remind the definition of
Brownian motion.

Definition 1: The process {B, }20 with a continuum parameter, it is a Brownian motion if

([7].pag.117)
1. The increases B,,, —B,, 7 > 0 are independent and stationary

2. trajectories {B, }tzo are continuous

3. forany ¢=>0, B, it has a normal repartition

4. E[B]=0, E[Bf]: t, forany =0

Theorem: Let be a one-dimensional Brownian motion {B[ZO}C R, B, = 0.we define the
row of Brownian motion’s expectation values of natural powers:

{:Bn(t)}neN’ IBn(t):EI:Btn]’ ﬁo(t)zla ﬂl(t):O (1)

Then the following relation of recurrent becomes true for » a natural bigger or equal to

£0) = (n=1)] B, (5)ds @

More than that, if n par and » impair we have:
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2k) .
ﬁzk(t)zgk13|tk’k€N 5 182k+1(t)=0' (3)
Demonstration: We start from the stochastic Ito integral, ([9], relation (4)):
t t
[BrdB, =—— 5|, ~2 [ B'ds )
0 n+1 29
We obtain:
1 0 n
B"™'|!=|B"dB, +—|B"ds 4
n +1 s 0 _([ K s 2 J. s ( )
B|i=(n+1)[B/dB, + ("’” jB" ds @)
0
We rewrite the relation for »:
t t
B!|,=n[BI"dB, + ”(”2_ ) [ Br2ds 4
0 0

As B, =0 and using the expectation’s properties from [7] (pag. 17) we obtain from (4"”)

E[B’]= nED B dBS} + @E{j B;st} (5)

0 0
As E { I f (s)dBS} =0, [11], (page 30); statements (2) it is demonstrated. For particularity

values of n e N, it is easy to verify:
n=0, ()= E|B’|= E[1]=1

n=1, ﬂl()— E[B]=0,
n=2, B,(t) _[,BO )ds = t
n= 3153 J-IBI
n= 4184 J-ﬂz 224.!2'l‘2

After this we demonstrate the statement (3) by induction consideringn . We state that

Bra=0. 5, 0)= 0 ey

Using (2) we obtain:
2(k +1)2k +1) V@Ey T k+2)
ﬂz(kﬂ)(t):fjﬂu s)ds = (k +1)2k +1) TR ~(k+1)!tk 1
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2k+3X2k+2

ﬂ2k+3 ( ) ( Iﬁ2k+l 0

This shows that statements (3) are true for any natural number n.

2. Conclusions

The row of one-dimensional Brownian movement’s natural powers’ expectations values

is formed of two lesser rows: The lesser row of impair rank that is constantly zero, and the
one of par rank which depends in time:

ﬂl(t):E[ ] 3(t):E[ ] ﬂ2k+l() [szﬂ] 0,...
0= =1 p.0)=El5* =1, p.l0)= ElB: =3¢ g, ()= ElBe]=150"...

By, (6)= E[B* |= ke
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