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Abstract: In the paper below are evaluated the expectation values of the natural 

powers of Brownian motion. It is given the definition of these evaluations and w e 
demonstrated the  relation between the terms of the same row. In these evalua
It is used the integ astic Itô calculation. ral stoch
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Demonstration: We start from the stochastic Itô integral, ([9], relation (4)): 
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We rewrite the relation for : 
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As , [11], (page 30); statements (2) it is monstrated. For particularity 

values of , it is easy to verify: 
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After this we demonstrate the statement (3) by induction considering . We state that n
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This shows that statements (3) are true for any natural number n. 
 

2. Conclusions  
 
The row of one-dimensional Brownian movement’s natural powers’ expectations values 

is formed of two lesser rows: The lesser row of impair rank that is constantly zero, and the 
one of par rank which depends in time:  
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