[2] Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation of continuous functions, Revue Roumaine de mathématique pures et appliquées, 14(3), 673-691, 1969.
[3] Stancu, D.D., Folosirea interpolarii liniare pentru construirea unei clase de polinoame Bernstein, Studii si Cercetari Matematice, 3(28), 369-379, 1976.

# SOME REASONS TO FUZZY APPROACH OF THE CHOICE FUNCTIONS 

ALINA CONSTANTINESCU ${ }^{1}$<br>${ }^{1}$ Valahia University of Targoviste, Department of Mathematics, Bd. Unirii 18, Targoviste, Romania

Abstract. The human preferences and the choice represent a significant problem in many domains as the decision theory, economics or social life. In the real life there are a many choice function that are not rationalizable. The specialized literature gives as procedures which imbedded the non-rational functions in to one rational. A full of advantages method that treats the non-rational choice functions is the utilization to fuzzy theory in the choice problems.

1. Introduction. A choice function are designed for describe a choice behaviour and it selects an object from a finite set $\mathrm{X}=\left\{x_{1}, \ldots x_{I}\right\}$ of I objects.
Definition: Let $\mathrm{P}(\mathrm{X})$ a collection of $\mathrm{A}, \mathrm{B}, \ldots$ nonempty subsets of X . A single-valued choice function $c$ on $P(X)$ is

$$
\begin{gathered}
\mathrm{c}: P(X) \rightarrow X \\
\text { with } \mathrm{c}(\mathrm{~A}) \in \mathrm{A} \text { for every } \mathrm{A} \in \mathrm{P}(\mathrm{X})
\end{gathered}
$$

Definition: For previous function, a preference relation $\succ$ is said to rationalize $\mathbf{c}$ if and only if

$$
\mathrm{c}(\mathrm{~A})=\mathrm{x}, \mathrm{x} \in \mathrm{~A} \text { and } \mathrm{x} \succ \mathrm{y} \text { for every } \mathrm{y} \in \mathrm{~A}, \mathrm{y} \neq \mathrm{x}
$$

In these conditions the function c is named rational choice function.
The rational choice functions have the following property (see [1]):
Property: If $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{X}), A \subseteq B$ and $\mathrm{c}(\mathrm{B}) \in \mathrm{A}$, then $\mathrm{c}(\mathrm{A})=\mathrm{c}(\mathrm{B})$.
Also,
A choice function c is rationalizable $\Leftrightarrow \mathrm{c}$ satisfies the previous property.
Observations:
A binary relation on $X, \succ$ is preference relation if is irreflexive, transitive and total. A preference relation rationalizes a choice function c when it chooses the most preferred object from a set A.

But in the real life there are a many choice function that are not rationalizable.
2. Reasons for fuzzy approach.

## JOURNAL OF SCIENCE AND ARTS

We start with a classical example. This show how fragile is the rationality in classical meaning.
A classical example:
Suppose that a person must to choose, for example, a piece of cheese from the set X where the objects are ordered by size

$$
x_{1}>x_{2}>\ldots>x_{I}
$$

If the preference relation $\succ$ is gave by the size then:

$$
x_{1} \succ x_{2} \succ \ldots \succ x_{I}
$$

If $\mathrm{I}=3$ then $\mathrm{X}=\left\{x_{1}, x_{2}, x_{3}\right\}, \mathrm{P}(\mathrm{X})=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{1}, x_{2}, x_{3}\right\}\right\}$
The choice function c is

| $\mathrm{A} \in \mathrm{P}(\mathrm{X})$ | $\left\{x_{1}\right\}$ | $\left\{x_{2}\right\}$ | $\left\{x_{3}\right\}$ | $\left\{x_{1}, x_{2}\right\}$ | $\left\{x_{1}, x_{3}\right\}$ | $\left\{x_{2}, x_{3}\right\}$ | $\left\{x_{1}, x_{2}, x_{3}\right\}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{c}(\mathrm{A})$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{1}$ | $x_{1}$ | $x_{2}$ | $x_{1}$ |

And it is rationalizable.
If the person choice results from some social reasons such cultural environment or loyalty to a person or group and the choice is the second preference, then function c is:

| $\mathrm{A} \in \mathrm{P}(\mathrm{X})$ | $\left\{x_{1}\right\}$ | $\left\{x_{2}\right\}$ | $\left\{x_{3}\right\}$ | $\left\{x_{1}, x_{2}\right\}$ | $\left\{x_{1}, x_{3}\right\}$ | $\left\{x_{2}, x_{3}\right\}$ | $\left\{x_{1}, x_{2}, x_{3}\right\}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{c}(\mathrm{A})$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{2}$ | $x_{3}$ | $x_{3}$ | $x_{2}$ |

It is obvious that $\mathrm{A}=\left\{x_{2}, x_{3}\right\} \subseteq \mathrm{B}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\mathrm{c}(\mathrm{B}) \in \mathrm{A}$ but $\mathrm{c}(\mathrm{A}) \neq \mathrm{c}(\mathrm{B})$, so choice function c is not rationalizable.

There is in the specialized literature a procedure which adds an supplementary dimension to the objects and embed the non rationalizable function in to a new rationalizable one. In this way the set X is transformed in set $\mathrm{X} \times \mathrm{W}$ where $\mathrm{W}=\left\{w_{1}, w_{2}, \ldots w_{I}\right\}$ and the preference relation $\succ$ is redefined on $\mathrm{X} \times \mathrm{W}$.

The existence of a large number of non rationalizable practical choice functions and the vague character of human preference lids to usages of the fuzzy theory in the choice problem.

Definition: A fuzzy binary relation on X is a function $r_{\swarrow}: X \times X \rightarrow[0,1]$ with

$$
\begin{aligned}
& r_{\prec}(x, y) \in(0,1] \text { if }(0,1] \in \prec \\
& \text { And } r_{\prec}=0 \text { if }(x, y) \notin \prec .
\end{aligned}
$$

In the specialized literature is considered the matrix representation of fuzzy binary relation which describes the preference relation:

## JOURNAL OF SCIENCE AND ARTS

$$
M\left(r_{\prec}\right)=\left(\begin{array}{cccc}
r_{\prec}\left(x_{1}, x_{1}\right) & r_{\prec}\left(x_{1}, x_{2}\right) & \ldots & r_{\prec}\left(x_{1}, x_{I}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
r_{\prec}\left(x_{I}, x_{1}\right) & r_{\prec}\left(x_{I}, x_{2}\right) & \ldots & r_{\prec}\left(x_{I}, x_{I}\right)
\end{array}\right)
$$

And
The sum-fuzzy rational choice function is defined as:

$$
\mathrm{c}(\mathrm{X})=\left\{x \in X \mid \sum_{z \in X} r_{\swarrow}(x, z) \geq \sum_{z \in X} r_{<}(y, z) \quad \text { for } \quad \text { all } \quad y \in X\right\}
$$

## Conclusions

The fuzzy theory must be taken in consideration when a choice problem is studied. There are many advantages including the rationability of the choice function. Also, this approach is more facile and uses small size of computations.

## References

[1] Bosser, W., Sprumont, Y., Suzumura, K., Rationalizabilty of choice functions on general domains without full transitivity, Soc. Choice Welfare 27, 435-458, 2006.

