JOURNAL OF SCIENCE AND ARTS

[2] Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation of continuous functions, Revue Roumaine de mathématique pures et appliquées, **14(3)**, 673-691, 1969.

[3] Stancu, D.D., Folosirea interpolarii liniare pentru construirea unei clase de polinoame Bernstein, Studii si Cercetari Matematice, **3(28)**, 369-379, 1976.

SOME REASONS TO FUZZY APPROACH OF THE CHOICE FUNCTIONS

ALINA CONSTANTINESCU¹

¹Valahia University of Targoviste, Department of Mathematics, Bd. Unirii 18, Targoviste, Romania

Abstract. The human preferences and the choice represent a significant problem in many domains as the decision theory, economics or social life. In the real life there are a many choice function that are not rationalizable. The specialized literature gives as procedures which imbedded the non-rational functions in to one rational. A full of advantages method that treats the non-rational choice functions is the utilization to fuzzy theory in the choice problems.

1. Introduction. A choice function are designed for describe a choice behaviour and it selects an object from a finite set $X = \{x_1, ..., x_I\}$ of I objects.

Definition: Let P(X) a collection of A, B,... nonempty subsets of X. A single-valued **choice** function c on P(X) is

c:
$$P(X) \rightarrow X$$

with c(A) \in A for every A \in P(X)

Definition: For previous function, a **preference relation** \succ is said to **rationalize c** if and only if

$$c(A)=x, x \in A \text{ and } x \succ y \text{ for every } y \in A, y \neq x$$

In these conditions the function c is named **rational choice function**. The rational choice functions have the following property (see [1]):

Property: If A, $B \in P(X)$, $A \subseteq B$ and $c(B) \in A$, then c(A)=c(B).

Also,

A choice function c is rationalizable \Leftrightarrow c satisfies the previous property.

Observations:

A binary relation on X, \succ is preference relation if is irreflexive, transitive and total. A preference relation rationalizes a choice function c when it chooses the most preferred object from a set A.

But in the real life there are a many choice function that are not rationalizable.

2. Reasons for fuzzy approach.

JOURNAL OF SCIENCE AND ARTS

We start with a classical example. This show how fragile is the rationality in classical meaning.

A classical example:

Suppose that a person must to choose, for example, a piece of cheese from the set X where the objects are ordered by size

$$x_1 > x_2 > \ldots > x_I$$

If the preference relation \succ is gave by the size then:

$$x_1 \succ x_2 \succ \ldots \succ x_I$$

If I=3 then X= $\{x_1, x_2, x_3\}$, P(X)= $\{\{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}\}$ The choice function c is

And it is rationalizable.

If the person choice results from some social reasons such cultural environment or loyalty to a person or group and the choice is the second preference, then function c is:

$$A \in P(X)$$
 $\{x_1\}$
 $\{x_2\}$
 $\{x_3\}$
 $\{x_1, x_2\}$
 $\{x_1, x_3\}$
 $\{x_2, x_3\}$
 $\{x_1, x_2, x_3\}$
 $c(A)$
 x_1
 x_2
 x_3
 x_2
 x_3
 x_3
 x_2

It is obvious that $A = \{x_2, x_3\} \subseteq B = \{x_1, x_2, x_3\}$ and $c(B) \in A$ but $c(A) \neq c(B)$, so choice function c is not rationalizable.

There is in the specialized literature a procedure which adds an supplementary dimension to the objects and embed the non rationalizable function in to a new rationalizable one. In this way the set X is transformed in set X×W where $W=\{w_1, w_2, ..., w_l\}$ and the preference relation \succ is redefined on X×W.

The existence of a large number of non rationalizable practical choice functions and the vague character of human preference lids to usages of the fuzzy theory in the choice problem.

Definition: A fuzzy binary relation on X is a function $r_{\leq} : X \times X \rightarrow [0,1]$ with

$$r_{\prec}(x, y) \in (0, 1] \text{ if } (0, 1] \in \prec$$

And $r_{\prec} = 0$ if $(x, y) \notin \prec$.

In the specialized literature is considered the matrix representation of fuzzy binary relation which describes the preference relation:

JOURNAL OF SCIENCE AND ARTS

$$M(r_{\prec}) = \begin{pmatrix} r_{\prec}(x_{1}, x_{1}) & r_{\prec}(x_{1}, x_{2}) & \dots & r_{\prec}(x_{1}, x_{I}) \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ r_{\prec}(x_{I}, x_{1}) & r_{\prec}(x_{I}, x_{2}) & \dots & r_{\prec}(x_{I}, x_{I}) \end{pmatrix}$$

And

The sum-fuzzy rational choice function is defined as:

$$\mathbf{c}(\mathbf{X}) = \left\{ x \in \mathbf{X} \left| \sum_{z \in \mathcal{X}} r_{\prec}(x, z) \ge \sum_{z \in \mathcal{X}} r_{\prec}(y, z) \quad for \quad all \quad y \in \mathbf{X} \right\}$$

Conclusions

The fuzzy theory must be taken in consideration when a choice problem is studied. There are many advantages including the rationability of the choice function. Also, this approach is more facile and uses small size of computations.

References

[1] Bosser, W., Sprumont, Y., Suzumura, K., *Rationalizabilty of choice functions on general domains without full transitivity, Soc. Choice Welfare* **27**, 435-458, 2006.