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Abstract: In this paper we present a probabilistic way to obtain Bernstein Stancu type
operators.

1. In[1] D.D. Stancu defined for two positive numbers 0 < a < # independent of nand
for any function f € C[@.1] the operator :

(B 10 =37, (x)f(" *“]. M
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The Bernstein-Stancu operator uses the equidistant nodes aq, =—ﬂ, a=x,+h, ..,
n+

and because
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Bernstein-Stancu operator interpolates function f in x=0 if =0 andin x=1if o = .
Values on test function are given by:

a, = x,+nh where h=
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so we can state that for any f e C[0,1] the sequence ((Pn(“’ﬂ ' f )(x))neN converges uniformly to

f(x) on [0,1].
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2. Another way to construct this operator is presented in [3] where it is considered a
function f, bounded on [0,1], the positive numbers 0 <« < and for neN and x€0,1]

the poligonal lines g, are defined:

px+k+a px+k+a )
N < —_— =0,n—p, =1,n
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with g, given by:
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jta jta .
[n+ﬂ’f(n+,b’n /= 0.n.

Using the Lagrange interpolation formula

Lfiabin=""" f@+=*

f(b)
the popligonal lines can be written as
X+ j+a
. n +Jﬂ j+
px+j+l+a
n+pf }

gpx,,,<z>=[1—<n+ﬂ>z+px+j+a]g(,,W(

+[<n+ﬂ>r-px-j-a]g(,,W[

for any

‘e px+j+a px+j+l+a )
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From the construction of poligonal lines we have
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n+pf n+pf
px+j+l+a) px+j+l+a
gpx,n - > _g(p—l)x,n - 5
n+pf n+pf

therefore

px+j+a _ < P p—k k+j+a
— = x (1—x —
e A e
For p=n and j =0 we obtain the Stancu operator (Pn(“’ﬂ ) f )(x).

3. Now we consider the Newton intepolation polynomial of a function f on nodes

= k+a,k=0,l,...,n with step 4=
n+p n+p

(N, = (@) + Y05 (6=, sy 1=
_ -« _a+k-1 o
—f(a0)+kz_(;[x n+ﬂJm£X oy j[ao,al,...,ak,f]
=f(ao>+k2";((n+ﬁ)x—a)-..(<n+ﬁ)x—(a+k—1))m[ao,al,...,ak;f]=
n Ak
=f(a0)+2((n+ﬂ)x—a)...((n+ﬂ)x—(a+k—1))%=

k!

a, ; we have:

= f(@)+ Y ((n+ pre-a

v+a
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If we denote (n+ f)x—a =y then x = and we get
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Now we consider a random variable Y defined as:

k h k n—k
Y: 4 pnk(‘x)z X (l_x) ) kzo,l,...,l’l, xeo,l].
pnk k

Y
The mean value of the random variable (N v { +;j is given by
n+

E((an)(j :;D - i(f(ao) Y% %jp (-

= fa+ Y LS, (),

If we take g(1) = E(t") then
g(t)= Zn:tkpnk (x)=(1-x+x)",
and making ¢ =1 in the expression of deﬁi_\(iative of order i >0
g(i)(t) = ik[i]tk’ipnk (x)= n[i]xi(l —x+r)"
k=0

we obtain

g"(1)= Yk p,, (x)=nlx".
k=0
so the mean value can be written as:

E((an)(y—{_a}]:f(ao)-l-i%n[i]xi =

n+pf

=f(ao)+i(’:]&,f<ao)x".

On the other hand the Newton polynomial is interpolatory on nodes a,, therefore
Y+a - k+a
E| (N, = > (N )| —— X)=

- Zf(::—;jp )= (P fXx),

and 1t follows that
n(n) . ,
(P;q(aﬁ)ka) = f(ao) + ZLi}Alhf(ao)xl-
i=1
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SOME REASONS TO FUZZY APPROACH OF THE CHOICE
FUNCTIONS
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Abstract.  The human preferences and the choice represent a significant problem in many
domains as the decision theory, economics or social life. In the real life there are a many
choice function that are not rationalizable. The specialized literature gives as procedures
which imbedded the non-rational functions in to one rational. A full of advantages method
that treats the non-rational choice functions is the utilization to fuzzy theory in the choice
problems.

1. Introduction. A choice function are designed for describe a choice behaviour and it
selects an object from a finite set X= { x,,...x, } of I objects.

Definition: Let P(X) a collection of A, B,... nonempty subsets of X. A single-valued choice
function ¢ on P(X) is

c: P(X) ->X
with c(A)e A for every AeP(X)

Definition: For previous function, a preference relation - is said to rationalize ¢ if and
only if

c(A)=x,xe A and x>y for every ye A, y#X

In these conditions the function ¢ is named rational choice function.
The rational choice functions have the following property (see [1]):

Property: If A, Be P(X), 4 < Band c¢(B) €A, then c(A)=c(B).

Also,
A choice function c is rationalizable < c¢ satisfies the previous property.

Observations:
A binary relation on X, > is preference relation if is irreflexive, transitive and total. A
preference relation rationalizes a choice function ¢ when it chooses the most preferred object
from a set A.

But in the real life there are a many choice function that are not rationalizable.

2. Reasons for fuzzy approach.
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