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 Abstract: In this article I try to demonstrate, using the factorial ring ]2[iΖ  an 
important property of the number 26, meaning that it’s the only integer which is a discrete 
distance of one from a square and a cube: . This problem is related to 
Pierre Fermat, a French mathematician of the XVII century above. It has proved after that he 
was somewhat wrong for there is a unique solution to the problem. The paper is divided in 
two parts. First I expose the basic ideas witch come to mind and lead to the solution witch is 
then exposed in the second part. 

32 32726525 =≤≤=

  
 1. Introduction to the problem, basic ideas 
 
 The problem discussed in this article can be formally exposed as: 
 If we take an integer  which verify  and , then it implies 
that ,  and . 

0>p 21 kp =− 3'1 kp =+
26=p 5=k 3'=k

 If we subtract the first equality with the second one, we obtain  and then 
 is a solution of the diophantine equation   with

32 '2 kk −=−
( ',kk ) 223 =− xy ( ) 2, Ν∈yx . In fact, the 
problem is to solve this equation. Thus, we will prove that: 
 
 Theorem 1. (Particular case of the Catalan problem) The unique solution of the 
diophantine equation in  2Ν

223 =− xy                                                     (1) 
is x = 5 and y  = 3 . 
 
 First we study the parity of the solutions. It leads to: 
 Lemma 1. If (x,y) is a solution of the equation  (1), then both x and y are odd numbers. 
 Prof. If x is an even number, then x is Ζ∈= mmx ,2 . We have that , and 
then also y is an even number. 

24 23 += my

 If x is odd number, then x is Ζ∈+= mmx ,12 . It results that , then 
also y is an odd number. 

344 23 ++= mmy

 From the Euler’s theorem we have that: , for )(mod1)( na n ≡ϕ ( ) 1, =na , where )(nϕ  

is Euler’s indicatory, ( ) ∏
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

mi ip
nnϕ or pn 1=  numbers, 

,1

11  , f ...21
2 - primemk

m
kk pp , ip mi ,1= . 

orem can be write: 1)( aa n ≡+ϕThe the n)(mod , ( ) 1, =na . 
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 Solving the equation (1) in 44/ ZZZ = , we have for , 224 ==n 2
2
114)4( =⎟

⎠
⎞

⎜
⎝
⎛ −=ϕ , 

and then . From there it results that . 1)4,(,)4(mod3 =≡ yyy )4(mod22 +≡ xy
If we assume that )4(mod2)4(mod242 32 ≡≡⇒≡⇒⇒ yyyxx . But, also, we 

have y2  (x and y have the same parity), so 38 y , from where results , 

contradiction with . The supposition we made is false, then x can’t be an even 
number, so we have that both x and y are odd numbers. 

)4(mod03 ≡y

)4(mod23 ≡y

 
 There are other properties which, even if there are interesting, are less important for 
the resolution of the equation  (1). 
 
 Property 1. If (x,y) is a solution of  (1), then  (x,y) = 1 . 
 Prof. Let d = (x,y) . 
 Then  and 1xdx ⋅= 1ydy ⋅= , Ζ∈11, yx . We have that 

( ) 22 2
1

3
1

22
1

23
1

3 =−⇒+= xdydxdyd . From there we have 22d , and also . The 
conclusion is that (x,y) = 1 . 

1±=d

 

 We now examine the equation in Z/3Z 3Ζ= . For n = 3, we have 2
3
113)( =⎟

⎠
⎞

⎜
⎝
⎛ −=nϕ , 

then, from the Euler’s theorem result that or  . It 
reduces the degree and we obtain . But , and 

. The resolution is easy and leads to    x = 3 or y = 3 in 
Z/3Z  . But we have that 

1)3,(,)3(mod12 =≡ yy )3(mod3 yy ≡
)3(mod22 += xy 1)3,(,)3(mod12 =≡ xx

)3(mod0)3(mod3 ≡⇔≡ yy

3Ζ= xy < : if it was the contrary, the difference between  and  
would never been equal to 2 because of the comparative growth of the functions  and 

3 . Thus it leads to the unique solution  x = 5 and y = 3, if we suppose that x and y  are 
both prime numbers. 

3y 2x
2xx →

yy →

 
 We wonder now if it is possible to use this result in order to achieve the 
demonstration. But if we continue onto this direction, we don’t obtain interesting results, and 
it is very fastidious. But it leads to the following idea: to use another ring in order to achieve 
the demonstration, especially unique factorization domain. 
 
  

2. Complete solution using unique factorization domain 
 
 In the section above, we have exposed clearly the problem and some basic properties. 
The lemma 1 will be very useful at the end. 
 We first remind the reader some definitions. 
 Let R be a commutative ring with no divisors of zero. 
 
 Definition 1. An element  it is a prime element in R if and only if: Rp ∈
 1) 0≠p  and ; )(RUp ∉
 2) For every  with Rba ∈, abp , it results that ap  or bp . 
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 Definition 2. A commutative ring R is called a factorial ring if has no divisors of zero, 
and if there exists a decomposition of any element in unique product (without taking account 
of the order) of prime elements of the ring. 
 
 Definition 3. A commutative ring R is called an Euclidian ring if there exist an 
application  with the property: for every { } Ν→0\: RN Rba ∈, , 0≠b  exists  q and r in R, 
with: 

rbqa += , where 0=r  or )()( bNrN < . 
 The application N  is called the norm application in R.  
 
 Theorem. If R  is an Euclidian ring, then R is a factorial one. 
 The prof of the theorem is in [1]. 
 

 The first and the classical example of Euclidian and also factorial ring is  Z, the ring of 

the integers. Another examples: ][iΖ  - the ring of Gauss’ integers, ]2[iΖ , ⎥
⎦

⎤
⎢
⎣

⎡ +
Ζ

2
31 i , 

. Examples of rings that are not factorial rings: ][xQ ]6[iΖ , ]5[iΖ , ]26[iΖ , ][ niΖ  
with Ζ∈≥+= nnkn ,3,14 . 

 
In factorial rings we can define a gcd (the greatest common divisor) , as in Z, and that 

is the property will be used.  
 
Definition. Let . An element Rba ∈, Rd ∈  is a gcd of a and b if and only if: 
1) ad  and bd (d is a  common divisor of a and b); 

2) if there Rd ∈∃ '  so that ad '  and bd ' , then dd ' . 
 
 Now we return to the equation (1). We have ( )( )2222 ixixx −+=+ , and 

( )( )223 ixixy −+=  .  
Then we study the equation in the factorial ring { }Ζ∈+=Ζ babiai ,2]2[ , with the 

norm application { } Ν→Ζ 0\]2[: iN , 22 2)2( babiaN +=+  . We know that the norm 
application have the following properties: 

 1) ]2[,,)()()( 212121 izzzNzNzzN Ζ∈∀= ; 
 2) if 21 zz  in ]2[iΖ , then )()( 21 zNzN  in N. 

 Assume that )2,2.(.. ixixdcgd −+= . It follows that 2ixd +  and 2ixd − . Let 

Ζ∈+= babiad ,,2 . We obtain 22id , so )22()( iNdN  and 

{ 8,4,2,1)(8)( ∈⇔ dNdN }. But 2)()2()(2 2 +⇔±⇒± xdNixNdNixd . We know 

that  x in an odd number, also  is odd, then N(d) is odd, but , and we 
have N(d) = 1. It follows that , with the solution 

22 +x { 8,4,2,1)( ∈dN }
12 22 =+ ba 1±=a  and  in N. We 

obtain  d =1 and 
0=b

1)2,2.(.. =−+ ixixdcg . 
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 We now use the unique factorization of both elements in [ ]2 : iΖ nz  

and 

zzix ...2 21=+

nzzzix ...2 1=−  (they are conjugate numbers). We have 2 1)2,2.(.. −+ xixdcg , 

which

=i

 implies that we have ji zz ≠  for every (i,j), combined with ( )( )223 ixixy −+=  it 

there exists 

with 

means that each iz  is present three times in the factorization.  Thus  ( ) 2, Ζ∈ba

(a + )3
22 biix =+ . 

 Expending the expression, we obtain ( ) =+=+
3

22 biaix  
)3(2)6( 323 aiaba +−=  and  123 32 =− bba  22 bb − ⇔ 1)23( 22 =− bab . It m  eans that 

, or ine the second set of
, whic have

1=b  and 1 and 123 −=−= bba . If we exam  
equalities, we have 13 h has no integer solution.  1=b  and 

2 =a

123 22 =−= bba −=b 22

2 =a  Therefore we 
1. 

 Finally, ( )3212 iix +=+ 252 iix +±=+. Expending it, we obtain . Recalling 
that 

se equation (1) and replace x by its value 5, we have to solve . It has a 
unique trivial solution y  = 3 in N. 

0 , we obtain x = 5. 
 If we u

x >
273 =y

 We end the demonstration by saying that )3,5(),( =yx  is a valid solution of the 
equation (1). 

es of diophantine equations witch can be solved using factorization 

 ] (the ring 
and we have the solutions  and 

 
3. Another exampl

domains: 
3.1. The equation y can be solved using Z[i of Gauss’ integers) 432 −= x

( )11,5 ± ( )2,2 ± . 

.2. The equation  can be solved using yx 272 =+ ⎥
⎦

⎤
⎢
⎣

⎡ +
Ζ

2
71 i3  and we have the 

olutions:  and ( )3,1± , ( )4,3± , ( )5,5± , ( )7,11± ( )15,181± . s
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