THE RELATION BETWEEN INCIDENCE COALGEBRA AND PATH COALGEBRA OF A PARTIAL ORDERED SET

GEORGIANA VELICU¹

¹Valahia University, Faculty of Science and Arts, Bd. Unirii, nr.18-24, Targoviste, Romania neacsugeorgiana@yahoo.com

Abstract: In the first part of the article are related some notion in a cathegoricaly way, like k-algebra and k-coalgebra, where k is a field. Then we construct the incidence coalgebra $(kS, \Delta, \varepsilon)$ and path coalgebra $(kQ, \Delta', \varepsilon')$ for a partial ordered set (P, \leq) , and in the final part of the paper we find a reletion between them, more exactly an injective application $f: kS \rightarrow kQ$.

1. Preliminary notions

Let *k* be a commutative field.

Definition. We say that a triplet (A, M, u) is a k - algebra, if A is a k - vector space, $M : A \otimes A \rightarrow A$ and $u : k \rightarrow A$ are linear applications of k -vector spaces such that $M \circ (M \otimes I) = M \circ (I \otimes M)$ and $M \circ (I \otimes u) = M \circ (u \otimes I)$.

Observation. The definition above is equivalent with the classical one, who claims A to be an unitary ring and to exist an application $\phi: k \to A$, with the condition $\operatorname{Im} \phi \subseteq Z(A)$. If we put $a \cdot b = M(a \otimes b)$, this multiplication give us an unitary ring structure on A, with unit u(1).

Definiton. We say that a triplet (C, Δ, ε) is a k-coalgebra, if C is a k-vector space, $\Delta: C \to C \otimes C$ and $\varepsilon: C \to k$ are linear applications of k-vector spaces such that $(\Delta \otimes I) \circ \Delta = (I \otimes \Delta) \circ \Delta$ and $(\varepsilon \otimes I) \circ \Delta = (I \otimes \varepsilon) \circ \Delta$.

The application Δ is called the *comultiplication* and ε is called the *counit* of the coalgebra C.

2. Incidence coalgebra of a partial ordered set.

Let (P, \leq) be a partial ordered set (poset). We assume that the set *P* is local finite; it means that for every $x, y \in P$ such that $x \leq y$, the set $[x, y] = \{z \in P | x \leq z \leq y\}$ is a finite one. Let $S = \{[x, y] | x, y \in P, x \leq y\}$.

Let *k* be a commutative field and *kS* the vector space over *k* with the base *S*.

We obtain $kS = \left\{ \sum_{i=1}^{n} a_{[x_i, y_i]} [x_i, y_i] [x_i, y_i] \in S, a_{[x_i, y_i]} \in k, n \in \mathbb{N} \right\}$. On this vector space we

define a coalgebra structure:

$$\Delta: kS \to kS \otimes kS , \ \Delta([x, y]) = \sum_{x \le z \le y} [x, z] \otimes [z, y]$$
$$\varepsilon: kS \to k , \ \varepsilon([x, y]) = \delta_{x, y}.$$

 $(kS, \Delta, \varepsilon)$ it is the *incidence coalgebra* of the partial ordered set *P*.

It is very simple to prove that Δ verifies $(\Delta \otimes I) \circ \Delta = (I \otimes \Delta) \circ \Delta$, and ε verifies $(I \otimes \varepsilon) \circ \Delta = (\varepsilon \otimes I) \circ \Delta$. We have:

$$(\Delta \otimes I) \circ \Delta([x, y]) = (\Delta \otimes I) \left(\sum_{x \le z \le y} [x, z] \otimes [z, y] \right) = \sum_{x \le z \le y} \Delta([x, z]) \otimes [z, y] =$$
$$= \sum_{x \le z \le y} \sum_{x \le l \le z} [x, t] \otimes [t, z] \otimes [z, y]$$
$$(I \otimes \Delta) \circ \Delta([x, y]) = (I \otimes \Delta) \left(\sum_{x \le z \le y} [x, z] \otimes [z, y] \right) = \sum_{x \le z \le y} [x, z] \otimes \Delta([z, y]) =$$
$$= \sum_{x \le z \le y} \sum_{x \le l \le y} [x, z] \otimes [z, t] \otimes [t, y],$$

from where we have $(\Delta \otimes I) \circ \Delta = (I \otimes \Delta) \circ \Delta$.

Also,
$$(I \otimes \varepsilon) \circ \Delta([x, y]) = (I \otimes \varepsilon) \left(\sum_{x \le z \le y} [x, z] \otimes [z, y] \right) = \sum_{x \le z \le y} [x, z] \otimes \varepsilon([z, y]) = \sum_{x \le z \le y} [x, z] \otimes \delta = [x, y] \otimes 1$$
 and

$$= \sum_{x \le z \le y} [x, z] \otimes \delta_{z, y} = [x, y] \otimes 1 \text{ and}$$
$$(\varepsilon \otimes I) \circ \Delta([x, y]) = (\varepsilon \otimes I) \left(\sum_{x \le z \le y} [x, z] \otimes [z, y] \right) = \sum_{x \le z \le y} \varepsilon([x, z]) \otimes [z, y] =$$
$$= \sum_{x \le z \le y} \delta_{x, z} \otimes [z, y] = 1 \otimes [x, y],$$

and because $[x, y] \otimes 1 = 1 \otimes [x, y]$, we obtain $(I \otimes \varepsilon) \circ \Delta = (\varepsilon \otimes I) \circ \Delta$. The kS^* - left module structure of kS is:

$$kS^* \times kS \to kS, \left(f, \sum_{i=1}^n a_{[x_i, y_i]}[x_i, y_i]\right) = \sum_{i=1}^n a_{[x_i, y_i]} \sum_{x_i \le z \le y_i} f([z, y_i])[x_i, z], \text{ for}$$
$$\Delta([x_i, y_i]) = \sum_{x_i \le z \le y_i} [x_i, z] \otimes [z, y_i].$$

The kS^* - right module structure of kS is:

$$kS \times kS^* \to kS, \left(\sum_{i=1}^n a_{[x_i, y_i]}[x_i, y_i], f\right) = \sum_{i=1}^n a_{[x_i, y_i]} \sum_{x_i \le z \le y_i} f([x_i, z])[z, y_i] \text{ for}$$
$$\Delta([x_i, y_i]) = \sum_{x_i \le z \le y_i} [x_i, z] \otimes [z, y_i].$$

3. Path coalgebra

A *quiver* is a pair $Q = (Q_0, Q_1)$, where Q_0 is the set of vertices and Q_1 is the set of the arrows between vertices. Let $s: Q_1 \to Q_0$ and $t: Q_1 \to Q_0$ be two applications, where $s(\alpha) = i$ and $t(\alpha) = j$, for every arrow $\alpha: i \to j$ from the vertex *i* to the vertex *j*.

We call a *path* in the quiver *Q* a sequence $p = \alpha_n \dots \alpha_1$, with $t(\alpha_i) = s(\alpha_{i+1}), i = 1, \dots, n$. A trivial path, noted with e_i , is a path with the property $t(e_i) = s(e_i) = i$. For a nontrivial path $p = \alpha_n \dots \alpha_1$ we put $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$. A path *p* is called *cycle* if s(p) = t(p). The length of a path *p* is |p|.

Now, let be (P, \leq) a poset locally finite and $(kS, \Delta, \varepsilon)$ its incidence coalgebra. We can construct the oriented quiver $Q = (Q_0, Q_1)$ in the following way:

-
$$Q_0 = P$$
, and for every $x, y \in P$ we put $\alpha : x \to y$, $\alpha(x) = \begin{cases} x \to y, & \text{if } x \leq y \\ 0, & \text{else} \end{cases}$; it

means that there exist an arrow from x to y if and only if $x \le y$;

- Q_1 is the set of all the arrows between the vertices from Q_0 .

Example 1. If $P = \{x, y, z, t\}$ with $x \le y \le z \le t$, the quiver $Q = (Q_0, Q_1)$ is:

Exemple 2. If $P = \{x, y, z, t, v, w\}$ is a poset such that: $x \le y \le z$ and $t \le v$, the quiver $Q = (Q_0, Q_1)$ is:

Proposition. The quiver $Q = (Q_0, Q_1)$ associated to the poset (P, \leq) has no oriented cycles.

Let *k* be a field, (P, \leq) a poset and $Q = (Q_0, Q_1)$ the quiver associated to *P*. Now we construct a *k* – vector space *kQ* with base *Q*. We obtain that $kQ = \left\{\sum_{i=1}^{n} a_i p_i \middle| a_i \in k, p_i \text{ drum in } Q, n \in N^*\right\}$. Let's define a coalgebra structure: $\Delta': kQ \to kQ \otimes kQ, \ \Delta'(p) = \sum_{p=p_1p_2} p_1 \otimes p_2$ $\varepsilon': kQ \to k, \ \varepsilon'(p) = \delta_{|p|,0}$

where for a path $p_2 = \alpha_s \dots \alpha_1$, $1 \le s \le t$ we know that |p| = t is it's lenght.

The triplet $(kQ, \Delta', \varepsilon')$ is called the *path coalgebra* of (P, \leq) .

We observe that for every path $p \in \mathbf{P}$ of finite length, the number of pairs (p_1, p_2) with $p = p_1 p_2$ is a finite one, and so, the sum which appears in $\Delta'(p)$ is finite.

It is obvious that $(kQ, \Delta', \varepsilon')$ is indeed coalgebra. We have:

$$(I \otimes \Delta')\Delta'(p) = (I \otimes \Delta')\left(\sum_{p=p_1p_2} p_1 \otimes p_2\right) = \sum_{p=p_1p_2} p_1 \otimes \Delta'(p_2) =$$
$$= \sum_{p=p_1p_2} \sum_{p_2=p_{21}p_{22}} p_1 \otimes p_{21} \otimes p_{22} = \sum_{p=p_1p_2p_3} p_1 \otimes p_2 \otimes p_3 \text{ and}$$
$$(\Delta' \otimes I)\Delta'(p) = (\Delta' \otimes I)\left(\sum_{p=p_1p_2} p_1 \otimes p_2\right) = \sum_{p=p_1p_2} \Delta'(p_1) \otimes p_2 =$$
$$= \sum_{p=p_1p_2} \sum_{p_1=p_{11}p_{12}} p_{11} \otimes p_{12} \otimes p_2 = \sum_{p=p_1p_2p_3} p_1 \otimes p_2 \otimes p_3,$$

and so $(I \otimes \Delta')\Delta'(p) = (\Delta' \otimes I)\Delta'(p)$, for every path p in Q.

More, we have,
$$(\varepsilon' \otimes I) \Delta(p) = (\varepsilon' \otimes I) \left(\sum_{p=p_1p_2} p_1 \otimes p_2 \right) = \sum_{p=p_1p_2} \varepsilon'(p_1) \otimes p_2 = 1 \otimes p$$
 and

$$(I \otimes \varepsilon')\Delta(p) = (I \otimes \varepsilon') \left(\sum_{p=p_1p_2} p_1 \otimes p_2 \right) = \sum_{p=p_1p_2} p_1 \otimes \varepsilon'(p_2) = p \otimes 1, \quad \text{so} \quad (\varepsilon' \otimes I)\Delta(p) =$$

 $(I \otimes \varepsilon') \Delta(p)$, for every path p in Q.

4. The relation between incidence coalgebra and path coalgebra of a poset

Theorem. Let (P, \leq) be a poset, $Q = (Q_0, Q_1)$ the quiver associated to (P, \leq) , $(kQ,\Delta',\varepsilon')$ the path coalgebra and (kS,Δ,ε) the incidence coalgebra. Then does exist an injectif application of k – coalgebras $f: kS \rightarrow kQ$.

Prof. Let $f: kS \to kQ$, $f\left(\sum_{i=1}^{n} a_{[x_i, y_i]}[x_i, y_i]\right) = \sum_{i=1}^{n} a_{[x_i, y_i]} \sum p_i$, where p_i is a path from

 x_i to y_i . From the definition of f it is obvious that f is a liniar application. Now, let prove that the two next diagrams are commutative (means that f is a k – morpfism of coalgebras).

Because S is a base for the coalgebra kS, it is enough to prove the commutability of the first diagram for every interval $[x, y] \in S$. And so we have:

$$(\Delta' \circ f)([x, y]) = \Delta'(f([x, y])) = \Delta'(\sum p) = \sum \Delta'(p) = \sum_{p} \sum_{p = p_2 p_1} p_2 \otimes p_1 \text{ and}$$
$$((f \otimes f) \circ \Delta)([x, y]) = (f \otimes f)(\Delta([x, y])) = (f \otimes f)\left(\sum_{x \le z \le y} [x, z] \otimes [z, y]\right) =$$
$$= \sum_{x \le z \le y} f([x, z]) \otimes f([z, y]) = \sum_{x \le z \le y} (\sum q_1) \otimes (\sum q_2),$$

where p is a path from x to y, q_1 is a path from x to z and q_2 is a path from z to y.

But
$$x \le z \le y$$
 if and only if does exist an arrow from x to z and another one from z to y, that implies $\sum_{p} \sum_{p=p_2p_1} p_2 \otimes p_1 = \sum_{x \le z \le y} (\sum q_1) \otimes (\sum q_2)$ and so $(\Delta' \circ f)([x, y]) = ((f \otimes f) \circ \Delta)([x, y])$, for every $[x, y] \in S$.

 $(\varepsilon' \circ f)([x, y]) = \varepsilon'(f([x, y])) = \varepsilon'(\sum_{x \in Y} f([x, y]))$ In the same way we prove

 $= \sum \varepsilon'(p) = \sum \delta_{|p|,0} = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{else} \end{cases}, \text{ where } p \text{ is a path from } x \text{ to } y, a \\ \varepsilon([x, y]) = \delta_{x,y} = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{else} \end{cases}. \text{ It is clear that } (\varepsilon' \circ f)([x, y]) = \varepsilon([x, y]), \text{ for every } [x, y] \in S. \end{cases}$ and

Now let prove that f is injective. Because S is a base for the coalgebra kS it is enough to prove that if $f([x, y]) = f([z, t]), \forall [x, y], [z, t] \in S$, then [x, y] = [z, t].

f([x, y]) = f([z, t]) implies $\sum_{p} p = \sum_{q} q$, where *p* is a path from *x* to *y*, and *q* is a path from *z* to *t*. We obtain that the paths from *x* to *y* are the same with those from *z* to *t*, and then x = z and y = t, means that [x, y] = [z, t].

Observation. Let (P, \leq) be a poset, $Q = (Q_0, Q_1)$ the quiver we associate to (P, \leq) , $(kQ, \Delta', \varepsilon')$ path coalgebra and $(kS, \Delta, \varepsilon)$ incidence coalgebra. Then the application $g: kQ \to kS$, $g\left(\sum_{i=1}^{n} a_i p_i\right) = \sum_{i=1}^{n} a_i [x_1^i, x_{i+1}^i]$, where if $p_i = \alpha_i^i ... \alpha_1^i$, $s(\alpha_1^i) = x_1^i$ and $t(\alpha_i^i) = x_{i+1}^i$, is not a coalgebra morpfism.

Prof. The application g is well definited because if $p_i = \alpha_t^i ... \alpha_1^i$ with $\alpha_j^i : x_j^i \to x_{j+1}^i$, for every $j \in \{1,...,t\}$, then $x_j^i \le x_{j+1}^i$, for every $j \in \{1,...,t\}$. And so we have $x_1^i \le ... \le x_{t+1}^i$, means that the interval $[x_1^i, x_{t+1}^i] \in S$ does exist. From the expression of g, it is obvious that it is a k – application of vector spaces. Now let prove that the next diagram is not commutative:

Because *Q* is a base for the coalgebra kQ it is enough to prove that the diagrame above is not commutative for some path $p \in Q$. Let $p = \alpha_t \dots \alpha_1$, with $\alpha_i : x_i \to x_{i+1}$, for every $i \in \{1, \dots, t\}$.

We have
$$(\Delta \circ g)(p) = \Delta([x_1, x_{t+1}]) = \sum_{x_1 \le z \le x_{t+1}} [x_1, z] \otimes [z, x_{t+1}]$$
 and
 $((g \otimes g) \circ \Delta)(p) = (g \otimes g) \left(\sum_{p=p_2p_1} p_2 \otimes p_1\right) = (g \otimes g) \left(\sum_{1 < s \le t_1} \alpha_t ... \alpha_s \otimes \alpha_{s-1} ... \alpha_1\right) =$
 $= \sum_{1 < x \le t+1} g(\alpha_t ... \alpha_s) \otimes g(\alpha_{s-1} ... \alpha_1) = \sum_{1 < s \le t+1} [x_s, x_{t+1}] \otimes [x_1, x_s],$

and the prof is ended.

Now, let $Q = (Q_0, Q_1)$ be a quiver. We put $P = Q_0$, where Q_0 is the set of vertices from Q. We define on P a relation \leq in the following way: for $x, y \in P$ we say that $x \leq y$ if and only if does exist $\alpha : x \rightarrow y$ arrow from x to y in the quiver Q. We put the condition that P be partial ordered (i.e. \leq is reflexive, antisimetric and transitive).

 (P, \leq) is reflexive if for every $x \in P$ we have $x \leq x$, means that exist an arrow from x to x in Q, which is obvious.

 (P, \leq) is antisimetric if for every $x, y \in P$, from $x \leq y$ and $y \leq x$ results that x = y, means that if does exist an arrow from x to y and another from y to x in Q, then x = y. This is possible only if Q does not have oriented cycles.

 (P, \leq) is transitive if for every $x, y, z \in P$ such that $x \leq y$ and $y \leq z$ we have $x \leq z$, means that if does exist arrow from x to y and another from y to z in Q, then we have arrow from x to z.

If $Q = (Q_0, Q_1)$ verify all this conditions, then (P, \leq) is a poset and we can define a k – incidence coalgebra $(kS, \Delta, \varepsilon)$, and a k – path coalgebra $(kQ, \Delta', \varepsilon')$.

If we note with R the set of all finite quivers with the properties above and P the set of all locat finite posets (P, \leq) , it is obvious that these two sets are equivalent.

Let C be the set of all k – coalgebras $(kS, \Delta, \varepsilon)$, where S is the set of all intervals of a poset $P \in P$. We note with C' the set of all k – coalgebras $(kQ, \Delta', \varepsilon')$, where $Q \in \mathbb{R}$. Then C and C' are equivalent categories, and all the properties of an incidence coalgebra can be studied through those of the path coalgebra and reverse.

5. Acknowledgement

The author wishes to thank his professor C. Nastasescu from University of Bucharest – Romania for useful remarks on the subject as well as for the support through the past years.

Referneces

[1] J. Gomez-Torrecillas, C. Manu, C. Nastasescu - "Quasi-co-Frobenius Coalgebras II", Communications in Algebra, Vol. 31, Nr. 10, pg. 5169-5177, 2003

[2] S. Montgomery - *"Hopf Algebras and Their Actions on Rings*", CBMS Regional Conference Series in Mathematics Number 82, American Mathematical Society, 1993

[3] C. Nastasescu, S. Dascalescu, S. Raianu - "*Hopf Algebras – An Introduction*", New York-Basel, Marcel Dekker Inc, 2001

[4] C. Nastasescu, S. Dascalescu, S. Raianu - "Algebre Hopf", Editura Universitatii din Bucuresti, 1998

[5] C. Nastasescu, Inele. Module. Categorii, Editura Academiei, Bucuresti, 1976

[6] G.Velicu - *"Studiu asupra coalgebrei de incidenta*", Conferinta Internationala de Analiza Neliniara si Matematici Aplicate, 7-8 dec. 2007, Universitatea Valahia Targoviste, Romania