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 Abstract: In the first part of the article are related some notion in a cathegoricaly 
way, like k-algebra and k-coalgebra, where k is a field. Then we construct the incidence 
coalgebra ( )ε,, ΔkS  and path coalgebra )',',( εΔkQ  for a partial ordered set , and in 
the final part of the paper we find a reletion between them, more exactly an injective 
application . 

),( ≤P

kQkSf →:
 

1. Preliminary notions 
 

 Let k be a commutative field.  
 Definition.  We say that a triplet  is a k - algebra, if A is a k – vector space, 

 and  are linear applications of k –vector spaces such that 
),,( uMA

AAAM →⊗: Aku →:
( ) ( )MIMIMM ⊗=⊗ oo  and ( ) ( )IuMuIM ⊗=⊗ oo .  

 Observation. The definition above is equivalent with the classical one, who claims A 
to be an unitary ring and to exist an application Ak →:φ , with the condition )(Im AZ⊆φ . If 
we put , this multiplication give us an unitary ring structure on A, with unit 

. 
)( baMba ⊗=⋅

)1(u
 Definiton. We say that a triplet ),,( εΔC  is a k - coalgebra, if  C  is a k-vector space, 

 and CCC ⊗→Δ : kC →:ε  are linear applications of  k –vector spaces such that 
( ) ( ) ΔΔ⊗=Δ⊗Δ oo II  and ( ) ( ) Δ⊗=Δ⊗ oo εε II . 

The application  is called the comultiplication and Δ ε  is called the counit of the 
coalgebra  C. 

 
2.  Incidence coalgebra of a partial ordered set. 

 
 Let  be a partial ordered set (poset). We assume that the set P is local finite; it 
means that for every such that

),( ≤P
Pyx ∈, yx ≤ , the set [ ] { }yzxPzyx ≤≤∈=,  is a finite one. 

Let [ ]{ }yxPyxyxS ≤∈= ,,, . 
 Let k be a commutative field and kS the vector space over k with the base S.  

We obtain [ ][ ][ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

Ν∈∈∈= ∑
=

nkaSyxyxakS
iiii yxii

n

i
iiyx ,,,, ,

1
, . On this vector space we 

define a coalgebra structure: 
kSkSkS ⊗→Δ :  , [ ]( ) [ ] [ ]∑

≤≤

⊗=Δ
yzx

yzzxyx ,,,  

kkS →:ε  , [ ]( ) yxyx ,, δε = . 
 ( )ε,, ΔkS  it is the incidence coalgebra of the partial ordered set P. 
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 It is very simple to prove that Δ  verifies ( ) ( ) ΔΔ⊗=Δ⊗Δ oo II , andε  
verifies ( ) ( ) Δ⊗=Δ⊗ oo II εε . We have: 

( ) [ ]( ) =Δ⊗Δ yxI ,o ( ) [ ] [ ] =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗Δ ∑

≤≤ yzx

yzzxI ,, [ ]( ) [ ] =⊗Δ∑
≤≤ yzx

yzzx ,,  

                             [ ] [ ] [ ]∑ ∑
≤≤ ≤≤

⊗⊗=
yzx ztx

yzzttx ,,,  

( ) [ ]( ) =ΔΔ⊗ yxI ,o ( ) [ ] [ ] =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗Δ⊗ ∑

≤≤ yzx

yzzxI ,, [ ] [ ]( ) =Δ⊗∑
≤≤ yzx

yzzx ,,  

                             [ ] [ ] [ ]∑ ∑
≤≤ ≤≤

⊗⊗=
yzx ytz

yttzzx ,,, , 

from where we have ( ) ( ) ΔΔ⊗=Δ⊗Δ oo II . 

 Also, ( ) [ ]( )yxI ,Δ⊗ oε ( ) [ ] [ ] =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗= ∑

≤≤ yzx

yzzxI ,,ε [ ] [ ]( ) =⊗∑
≤≤ yzx

yzzx ,, ε                          

  and  [ ] =⊗= ∑
≤≤ yzx

yzzx ,, δ [ ] 1, ⊗yx

 ( ) [ ]( )yxI ,Δ⊗ oε ( ) [ ] [ ] =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗= ∑

≤≤ yzx

yzzxI ,,ε [ ]( ) [ ] =⊗∑
≤≤ yzx

yzzx ,,ε  

                                         [ ] [ ]yxyz
yzx

zx ,1,, ⊗=⊗= ∑
≤≤

δ , 

and because [ ] [ yxyx ,11, ⊗ ]=⊗ , we obtain ( ) ( ) Δ⊗=Δ⊗ oo II εε . 
 The *kS - left module structure of kS is: 

kSkSkS →×* , , for [ ][ ] [ ] [ ]( )[ zxyzfayxaf i

n

i yzx
iyx

n

i
iiyx

ii

iiii
,,,,

1
,

1
, ∑ ∑∑

= ≤≤=

=⎟
⎠

⎞
⎜
⎝

⎛ ]

[ ]( ) [ ] [ ]∑
≤≤

⊗=Δ
ii yzx

iiii yzzxyx ,,, . 

 The *kS - right module structure of kS is: 

kSkSkS →× * ,  for [ ][ ] [ ] [ ]( )[ i

n

i yzx
iyx

n

i
iiyx yzzxfafyxa

ii

iiii
,,,,

1
,

1
, ∑ ∑∑

= ≤≤=

=⎟
⎠

⎞
⎜
⎝

⎛ ]

[ ]( ) [ ] [ ]∑
≤≤

⊗=Δ
ii yzx

iiii yzzxyx ,,, . 

3. Path coalgebra 
 
A quiver is a pair , where  is the set of vertices and is the set of the 

arrows between vertices. Let  and  be two applications, where 
),( 10 QQQ = 0Q 1Q

01: QQs → 01: QQt →
is =)(α  and jt =)(α , for every arrow ji →:α  from the vertex i to the vertex j . 
We call a path in the quiver Q a sequenc 1e ...ααnp = , with n., ist ii ,..1),()( 1 == +αα . 

A trivial path, noted wit ie , is a path with the property ih eset ii == )()( . For a nontrivial path 

1...ααnp =  we put )()( 1αsps =  and )()( ntpt α= . A path p is called cycle if . 
The length of a path  p is 

)()( ptps =

p .  
Now, let be ),( ≤P  a poset locally finite and ( )ε,, ΔkS  its incidence coalgebra.  
We can construct the oriented quiver ),( 10 QQQ =  in the following way: 
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- , and for every PQ =0 Pyx ∈,  we put yx →:α , ; it 

means that there exist an arrow from  x to y if and only if 
⎩
⎨
⎧ ≤→

=
else

yxifyx
x

,0
,

)(α

yx ≤ ; 
-  is the set of all the arrows between the vertices from . 1Q 0Q
Example 1. If  with { }tzyxP ,,,= tzyx ≤≤≤ , the quiver ),( 10 QQQ =  is: 

 
Exemple 2. If  is a poset such that: { wvtzyxP ,,,,,= } zyx ≤≤  and , the quiver 

 is: 
vt ≤

),( 10 QQQ =

 
Proposition. The quiver  associated to the poset  has no oriented 

cycles . 
),( 10 QQQ = ),( ≤P

 
Let k be a field,  a poset and ),( ≤P ),( 10 QQQ =  the quiver associated to P. Now we 

construct a k – vector space kQ with base Q. We obtain that 

⎭
⎬
⎫

⎩
⎨
⎧

∈∈= ∗

=
∑ NnQindrumpkapakQ ii

n

i
ii ,,

1
. Let’s define a coalgebra structure: 

kQkQkQ ⊗→Δ :' , ∑
=

⊗=Δ
21

21)('
ppp

ppp  

kkQ →:'ε , 0,)(' pp δε =  

where for a path 12 ...αα sp = ,  we know that ts ≤≤1 tp =  is it’s lenght. 
 The triplet )',',( εΔkQ  is called the path coalgebra of ),( ≤P . 
 We observe that for every path ∈p P of finite length, the number of pairs  
with  is a finite one, and so, the sum which appears in 

( )21, pp

21 ppp = )(' pΔ  is finite. 
 It is obvious that )',',( εΔkQ  is indeed coalgebra. We have:  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗Δ⊗=ΔΔ⊗ ∑

= 21

21')(''
ppp

ppIpI  ∑
=

Δ⊗=
21

)(' 21
ppp

pp  =     

                       ∑ ∑
= =

⊗⊗=
21 22212

22211
ppp ppp

ppp ∑
=

⊗⊗=
321

321
pppp

ppp  and  

( ) =Δ⊗Δ )('' pI   ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗Δ ∑

= 21

21'
ppp

ppI =⊗Δ∑
= 21

21)('
ppp

pp      

                      ∑ ∑
= =

⊗⊗=
21 12111

21211
ppp ppp

ppp ∑
=

⊗⊗=
321

321
pppp

ppp , 
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and so  = , for every path p in Q. ( ) )('' pI ΔΔ⊗ ( ) )('' pI Δ⊗Δ

 More, we have,  and 

, so 

( ) ( ) ( ) pppppIpI
pppppp

⊗=⊗=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗=Δ⊗ ∑∑

==

1'')('
2121

2121 εεε

( ) ( ) ( ) 1'')('
2121

2121 ⊗=⊗=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗=Δ⊗ ∑∑

==

pppppIpI
pppppp

εεε ( ) )(' pI Δ⊗ε  = 

( ) )(' pI Δ⊗ε , for every path p in Q. 
 

4. The relation between incidence coalgebra and path coalgebra of a poset 
 
Theorem. Let  be a poset, ),( ≤P ),( 10 QQQ =  the quiver associated to ),( ≤P , 

)',',( εΔkQ  the path coalgebra and ),,( εΔkS  the incidence coalgebra. Then does exist an 
injectif application of k – coalgebras . kQkSf →:

Prof. Let , , where  is a path from 

 to . From the definition of f  it is obvious that f  is a liniar application. Now, let prove 
that the two next diagrams are commutative (means that f is a k – morpfism of coalgebras).  

kQkSf →: [ ][ ] [ ]∑ ∑∑
==

=⎟
⎠

⎞
⎜
⎝

⎛ n

i
iyx

n

i
iiyx payxaf

iiii
1

,
1

, , ip

ix iy

       
Because S is a base for the coalgebra kS , it is enough to prove the commutability of 

the first diagram for every interval [ ] Syx ∈, . And so we have: 
( ) [ ]( ) =Δ yxf ,'o [ ]( )( ) =Δ yxf ,' ( ) =Δ ∑ p' ∑ ∑∑

=

⊗=Δ
p ppp

ppp
12

12)('  and 

( )( ) [ ]( ) ( ) [ ]( )( ) ( ) [ ] [ ] =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗=Δ⊗=Δ⊗ ∑

≤≤ yzx

yzzxffyxffyxff ,,,,o  

                                [ ]( ) [ ]( ) ( ) ( )∑ ∑∑∑
≤≤≤≤

⊗=⊗=
yzxyzx

qqyzfzxf 21,, ,  

where p  is a path from x to y ,  is a path from x to z and is a path from z to y.  1q 2q
 But yzx ≤≤  if and only if does exist an arrow from x to z and another one from z to 
y , that implies ∑ ∑

=

⊗
p ppp

pp
12

12 = ( ) ( )∑ ∑∑
≤≤

⊗
yzx

qq 21  and so 

, for  every ( ) [ ]( ) =Δ yxf ,'o ( )( ) [ ]( yxff ,Δ⊗ o ) [ ] Syx ∈, . 
 In the same way we prove   ( ) [ ]( ) [ ]( )( ) ( ) === ∑ pyxfyxf ',',' εεε o  

∑∑
⎩
⎨
⎧ =

===
else

yxif
p p ,0

,1
)(' 0,δε , where p is a path from x to y, and 

. It is clear that [ ]( )
⎩
⎨
⎧ =

==
else

yxif
yx yx ,0

,1
, ,δε ( ) [ ]( ) =yxf ,'oε  [ ]( )yx,ε , for every [ ] . Syx ∈,

 Now let prove that f  is injective. Because S  is a base for the coalgebra kS it is enough 
to prove that if [ ]( ) [ ]( ) [ ] [ ] Stzyxtzfyxf ∈∀= ,,,,,, , then [ ] [ ]tzyx ,, = . 
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  implies[ ]( ) [ ]( tzfyxf ,, = ) ∑∑ =
qp

qp , where p is a path from x to y, and q is a path 

from z to t . We obtain that the paths from x to y are the same with those from z to t , and then 
zx =  and , means that [ ]ty = [ ]tzyx ,, = . 

 
 Observation.  Let  be a poset, ),( ≤P ),( 10 QQQ =  the quiver we associate to ),( ≤P , 

)',',( εΔkQ  path coalgebra and ),,( εΔkS  incidence coalgebra. Then the 

application , , where if , kSkQg →: [∑∑
=

+
=

=⎟
⎠

⎞
⎜
⎝

⎛ n

i

i
t

i
i

n

i
ii xxapag

1
11

1
, ] ii

tip 1...αα= ( ) ii xs 11 =α  and 

( ) i
t

i
t xt 1+=α , is not a coalgebra morpfism. 

 Prof. The application g is well definited because if  with , 

for every , then , for every 

ii
tip 1...αα= i

j
i
j

i
j xx 1: +→α

{ tj ,...,1∈ } i
j

i
j xx 1+≤ { }tj ,...,1∈ . And so we have , 

means that the interval  does exist. From the expression of g, it is obvious that it 
is a k – application of vector spaces. Now let prove that the next diagram is not commutative: 

i
t

i xx 11 ... +≤≤

Sxx i
t

i ∈+ ],[ 11

 
 Because Q is a base for the coalgebra kQ it is enough to prove that the diagrame above 
is not commutative for some path Qp ∈ . Let 1...αα tp = , with 1: +→ iii xxα , for every 

. { }ti ,...,1∈
 We have ( ) [ ]( ) [ ] [ ]∑

+≤≤
++ ⊗=Δ=Δ

11

1111 ,,,)(
txzx

tt xzzxxxpgo  and  

  ( )( )( ) ( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⊗⊗=Δ⊗ ∑∑

≤<
−

= 112 1
1112 ......

ts
sst

ppp

ggppggpgg ααααo

                                       ( ) ( ) [ ] [ ]∑∑
+≤<

+
+≤<

− ⊗=⊗=
11

11
11

11 ,,......
ts

sts
tx

sst xxxxgg αααα , 

and the prof is ended. 
 
 Now, let  be a quiver. We put ),( 10 QQQ = 0QP = , where  is the set of vertices 
from Q. We define on P a relation  in the following way: for 

0Q
≤ Pyx ∈,  we say that yx ≤  if 

and only if does exist yx →:α  arrow from x to y in the quiver Q. We put the condition that 
P be partial ordered (i.e.  is reflexive, antisimetric and transitive).  ≤
  is reflexive if for every ),( ≤P Px ∈  we have xx ≤ , means that exist an arrow from x 
to x in Q, which is obvious. 
  is antisimetric if for every),( ≤P Pyx ∈, , from yx ≤  and xy ≤  results that yx = , 
means that if does exist an arrow from x to y and another from y to x in Q, then yx = . This is 
possible only if Q does not have oriented cycles. 
  is transitive if for every ),( ≤P Pzyx ∈,,  such that yx ≤  and zy ≤   we have zx ≤ , 
means that if does exist arrow from x to  y and another from y to z in Q, then we have arrow 
from x to z. 
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 If  verify all this conditions, then ),( 10 QQQ = ),( ≤P  is a poset and we can define a k 
– incidence coalgebra ( )ε,, ΔkS , and a k – path coalgebra ( )',', εΔkQ . 
 If we note with R  the set of all finite quivers with the properties above and P  the set 
of all locat finite posets , it is obvious that these two sets are equivalent. ),( ≤P
 Let C be the set of all k – coalgebras ( )ε,, ΔkS , where S is the set of all intervals of a 
poset P∈P. We note with C’ the set of all k – coalgebras ( )',', εΔkQ , where Q∈R . Then C  
and C’  are equivalent categories, and all the properties of an incidence coalgebra can be 
studied through those of the path coalgebra and reverse.  
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