ORIGINAL PAPER

PARTITIONS OF THE SET OF POSITIVE INTEGERS IN TRANSLATED SETS

VASILE POP1

Manuscript received: 10.07.2015; Accepted paper: 02.09.2015; Published online: 30.09.2015.

Abstract. If $F = \{A_i \mid i \in I\}$ is a family of subsets $A_i \subset \mathbb{N}$, $i \in I$, we say that F is a translated family if there is a subset $B \subset \mathbb{N}$ and a sequence $\{a_i \mid i \in I\} \subset \mathbb{Z}$ such that $B = a_i + A_i$, $i \in I$. In this paper we study the existence of partitions of the set \mathbb{N} in translated sets.

Keywords: Translated families, partitions, arithmetic progression.

1. INTRODUCTION

Many of actual problems regarding partition and in particular partitions of **N** and **Z** are from Ramsey Theory: a collection of results which, given a finite partition (coloring) of some structure guarantee the existence of certain monochromatic configuration or substructures. Van der Waerden's Theorem [2] is the result which has determined the research in Ramsey Theory of Integers [1].

In this paper we study a different type of problems: the possibility of partition of N in translated sets, problems studied in [3] and [4].

2. INFINITE PARTITIONS IN TRANSLATED SETS

The problems which we discuss in this section is whether there are partitions of the set **N** in an infinity of translated sets, that is there are subsets $B \subset \mathbf{N}$ and sequences $\{a_n \mid n \in \mathbf{N}\} \subset \mathbf{N}$ such that the sets $A_n = a_n + B$, $n \in \mathbf{N}$ form a partition of **N**.

First we notice that any two translated sets have the same cardinality, so the sets A_n , $n \in \mathbb{N}$ are all finite or all infinite. In the case of finite sets we can construct infinite partition of any cardinal $k \in \mathbb{N}$:

Example 2.1. We take
$$B = \{0,1,...,k-1\} = [1,k-1]$$
 and $a_n = n \cdot k$, $n \in \mathbb{N}$.

We have:
$$A_0 = 0 + B = B$$
, $A_1 = k + B = [k, 2k - 1]$, $A_2 = 2k + B = [2k, 3k - 1]$,..., $A_n = nk + B = [nk, (n + 1)k - 1]$,..., and the sets $A_0, A_1, A_2, ..., A_n$,... form a partition of \mathbf{N} .

It is obvious that using this idea it is not possible to construct partitions in infinite sets but the answers for the case of infinite sets is affirmative.

ISSN: 1844 6 9581 Mathematics Section

¹ Technical University of Cluj-Napoca, Department of Mathematics, 400114 Cluj-Napoca, Romania. E-mail: <u>Vasile.Pop@math.utcluj.ro</u>.

212 Partitions of the set of i Vasile Pop

Theorem 2.1. There are partitions of N into an infinite number of infinite translated sets.

Proof: We look for a partition of the form $\mathbf{N} = \bigcup_{n=0}^{\infty} A_n$, in which all the sets A_n are

infinite and can be obtained by the translation of the set $B = A_0$, the set from the partition which contain 0.

Let $T = \{t_0, t_1, t_2, ..., t_n, ...\}$ be the set of translations and let $A_n = t_n + B$, $n \in \mathbb{N}$. The condition that the sets A_n , $n \in \mathbb{N}$ form a partition of \mathbb{N} is about showing that any number $n \in \mathbb{N}$ can be written uniquely as n = t + b, with $t \in T$ and $b \in B$.

We define the set B as the set of natural numbers which in base 2 are of the form: $x = \overline{x_n x_{n-1} ... x_2 x_1 x_0}$ and all digits with odd index are 0: $0 = x_1 = x_3 = x_5 = ...$

We define the set T as the set of numbers x which in base 2 have all the even index digits equal to 0. Note that $\mathbf{N} = T + B$ and that any positive integer n can be written in a unique form: n = t + b, $t \in T$ and $b \in B$.

3. FINITE PARTITION OF N IN TRANSLATED SETS

The most famous partition of \mathbf{N} in n subsets is the partition in equivalence classes modulo $n: \mathbf{N} = C_0 \cup C_1 \cup ... \cup C_{n-1}$, where $C_0 = n \cdot \mathbf{N}$, $C_1 = 1 + n \cdot \mathbf{N}$,..., $C_{n-1} = n - 1 + n \cdot \mathbf{N}$, such that the sets $C_1, C_2, ..., C_{n-1}$ can be obtained by the translation of the set C_0 and we have the relations:

$$n + C_0 = n - 1 + C_1 = n - 2 + C_2 = \dots = 1 + C_{n-1} = n \cdot \mathbf{N}^*$$
.

We propose to characterize the *n*-tuples $(a_1, a_2, ..., a_n)$ for which there are partition of the set $\mathbf{N} : \mathbf{N} = A_1 \cup A_2 \cup ... \cup A_n$ such that $a_1 + A_1 = a_2 + A_2 = ... = a_n + A_n$.

We obtain a characterization of arithmetic progression with a prime number of terms.

Theorem 3.1. Let $n \ge 3$ be a prime number and let $a_1 < a_2 < ... < a_n$ be integers.

Then $a_1, a_2, ..., a_n$ is an arithmetic progression if and only if there exists a partition of **N** with classes $A_1, A_2, ..., A_n$ such that $a_1 + A_1 = a_2 + A_2 = ... = a_n + A_n$.

Proof: If $a_1, a_2, ..., a_n$ is an arithmetic progression with step r then the partition (A, A-r, A-2r, ..., A-(n-1)r), with $A = \bigcup_{k \geq 0} \{knr + (n-1)r + i \mid i \in \overline{0,r-1}\}$ fulfils the required condition.

For the converse, denote $r_i = a_n - a_{n-i}$ and $B_i = A_{n-i}$ for $i \in \overline{0, n-1}$, so $B_i = B_0 + r_i$ for $i \ge 1$. We will call segment of length k of the set B_i every set $\{a, a+1, ..., a+k-1\} \subset B_i$ such that $a-1 \notin B_i$ and $a+k \notin B_i$.

We will firstly prove that each B_i is an union of segments of the same lengths $r = r_1$.

From $x \in B_0 \Rightarrow x + r \in B_1$ we get $x \in B_0 \Rightarrow x + r \notin B_0$, therefore all the segments of B_0 must have lengths less that r + 1. If B_0 contains segments of lengths less than r, let S be

www.josa.ro Mathematics Section

Partitions of the set of í Vasile Pop 213

the first of these. Then $S+r \subset B_1$ and between S and S+r there exists a segment S' of some B_i , $i \neq 0$. But, in this case the segment $S'-r_i$ would be in B_0 , would have length less that r and would be before S, which contradicts the way S was chosen.

This proves that all the segments of B_0 have length r and, from $B_i = B_0 + r_i$, this is also true for every B_i .

We will now prove that the first segment of B_i is $S_i = \{ir, ir+1, ..., ir+r-1\}$ for every $i \in \overline{0, n-1}$. Since $x \in B_i$ for $i \ge 1 \Rightarrow x \ge r_i \ge r$ it follows that B_0 must contain the segment $S_0 = \{0,1,...,r-1\}$ and therefore B_1 contains the segment $S_1 = \{r,r+1,...,2r-1\}$.

Suppose now that there exists k < n $(k \ge 2)$ such that $S_0 \in B_0$, $S_1 \in B_1,...$, S_{k-1} and $S_k \notin B_k$. Then S_k must be a segment of some B_i (since all the segments have the same length), i must be less than k and B_i must be B_0 (because the second segment of every B_i , $i \ge 1$ must come after the second segment of B_0).

This leads to $S_{k+1} \in B_0$, $S_{k+2} \in B_2$,..., $S_{2k-1} \in B_{k-1}$ and, repeating the above judgement if necessary, the first segment of B_k must be of the form S_{lk} , $l \ge 2$. This leads to $r_k = lk$, therefore $S_{(l+1)k} = S_k + r_k \in B_k$. The segment S_{lk+1} cannot be in B_0 (it would lead to $S_{(l+1)k} \in B_{k-1}$) or in any of the $B_i's$, $i \in \overline{0,k-1}$ (the set $\{S_0,S_1,...,S_{lk+1}\}$ would contain more segments from B_i than segments from B_0) therefore $S_{lk+1} \in B_{k+1}$.

In the same way $S_{lk+2} \in B_{k+2},..., S_{lk+k-1} \in B_{2k-1}$ and the sequence of segments from $(B_k, B_{k+1},..., B_{2k-1})$ will repeat itself a number of times before the appearance of a segment from a new set (which might be B_0 or B_{2k}).

We notice that a judgement as above shows that each time when a segment from a new set B_{sk} appears, then he must be followed immediately by segments from the sets $B_{sk+1}, B_{sk+2}, ..., B_{sk+k-1}$, so the number n of $B_i's$ must be a multiple of k, 1 < k < n, a contradiction with the premises.

Thus $S_i \in B_i$ for every $i \in \overline{0, n-1}$, therefore $r_i = ir$ for every $i \in \overline{1, n-1}$ and $a_1, a_2, ..., a_n$ is an arithmetic progression.

Remark 3.1. If the number of terms of progression is not a prime number one of the implication of Theorem 3.1 is not valid. More precisely, there are partitions of the set N in $n = p \cdot q$ translated subsets ($p \ge 2$, $q \ge 2$) but the set T of translations does not form an arithmetic progression, as we shall see in the next example.

Example 3.1.
$$B_0 = \{2nk \mid k \in \mathbb{N}\} \cup \{2nk + p \mid k \in \mathbb{N}\} \text{ and } r_i = i + p \left[\frac{i}{p}\right] \text{ for } i \in \overline{1, n-1}$$

which corresponds to the periodic sequence of segments of length 1 obtained by repeating the block $[B_0B_1...B_{p-1}B_0...B_{p-1}]$ $[B_pB_{p+1}...B_{2p-1}B_p...B_{2p-1}]...$ $[B_{n-p}B_{n-p+1}...B_{n-1}B_{n-p}...B_{n-1}]$.

For p = q = 2, n = 4, we obtain the partition:

$$A_0 = \{8k, 8k + 2 \mid k \in \mathbf{N}\}, \ A_1 = \{8k + 1, 8k + 3 \mid k \in \mathbf{N}\},$$

$$A_2 = \{8k+4, 8k+6 \mid k \in \mathbf{N}\}, \ A_3 = \{8k+5, 8k+7 \mid k \in \mathbf{N}\}$$

ISSN: 1844 6 9581 Mathematics Section

214 Partitions of the set of í Vasile Pop

 $a_0 = 5$, $a_1 = 4$, $a_2 = 1$, $a_3 = 0$, which is not an arithmetic progression, but:

$$a_0 + A_0 = a_1 + A_1 = a_2 + A_2 = a_3 + A_3$$
.

REFERENCES

- [1] Landman, B.M., Robertson, A., Ramsey Theory on the Integers, A.M.S. 2004.
- [2] van der Waerden, B.L., Bewis einer Baudetschen Vermutung, *Nieuw Arch. Wiskunde*, **15**, 212, 1927.
- [3] Pop, V., Teleuca, M., *Probleme de combinatorică elementară*, Ed. Matrix Rom, 2012.
- [4] Pop, V., *Romanian Mathematical Competitition 1998*, S.S.M.R. (Problem 12, pp. 30, 42-43).

www.josa.ro Mathematics Section